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ABSTRACT
Malicious bot traffic has long been a serious threat to the stability
and reliability of the Internet. Despite continued efforts and best
practices, network attacks by automated bot messages are consis-
tently on the rise. These attacks include email or instant messaging
spams, remote password cracking, and even distributed denial-of-
service attacks by coordinated botnets, just to name a few.

In this paper, we envision a new network environment where we
can deterministically identify the human traffic from the bot traffic.
We design a reliable human-attested message creation framework
that proves the human existence for the messages that travel over
the Internet. By tightly binding human typings to message compo-
sition, we have each message carry a human attestation and allow
the remote party to verify the identity of the traffic source. Unlike
previous works, our framework removes the chance of attestation
forgery by establishing a secure path from the input device to the
human message attester. For this, we draw the root of trust from the
input hardware and a trusted platform module (TPM), and securely
extend it to the software attester using the late launch capability
available in modern processors. Our measurements show that the
human attestation process takes about 610 milliseconds for a typical
email, an average instant chat message, or an SSH password login
attempt. We find that the majority of the attestation delay is con-
tributed by relatively slow TPM operations and late-launched code
execution, which we expect will improve as the demand for trusted
computing technology grows.

1. INTRODUCTION
Automated bot messages have extensively permeated our Inter-

net life. Email spamming shows no sign of reduction as almost 9
out of 10 messages in 2011 were estimated to be spams [28], and
the cost for spam emails amounts to $130 billion around the world
in 2009, a 30% increase from 2007 [9]. Instant messaging (IM)
spams have also been prevalent as 1 in every 78 hyperlinks in chat
messages leads to advertisement sites [42]. Popular blogs and so-
cial networking sites such as Facebook [13] and Twitter [47], and
even video sharing sites like YouTube [54] constantly fight against
massively-automated bot messages.

In response to these attacks, the spam detection technology has
greatly improved over time. Gmail says that its spam filtering rate is
over 99% as many of commercial spam filtering tools report similar
statistics [16]. While the deployment of effective filters significantly
reduces the spams, it leaves the chance of false positives where
legitimate emails are misclassified as spam. Gmail reports the
false positive rate as high as 1% [16], and what is worse is that
the problem is not limited to email as social networking site users
are often inflicted by incorrect filtering [14]. As a result, reliable

messaging on the Internet still remains as a challenging problem.
Human attestation is an emerging technology that can reliably

eliminate these bot attacks [15, 19, 34]. Human-attested messages
carry an unforgeable proof that verifies human existence at the time
of message creation. Using the proof, servers can enforce their
own policy to screen unwanted bot traffic based on the identity of
the traffic source. Typically, the human activity is inferred from
keystroke events and cryptographic signatures from secure hardware
are used as a human attestation proof for the messages. With an
accurate human attestation framework, we may envision a network
environment free from bot-generated messages or at least we can
enforce a tighter control over the bot traffic.

Not-a-Bot (NAB) [19] is one of the first works that associates net-
work messages with human activity. NAB uses a prototype attester
running under a trusted hypervisor to generate human attestation
proofs when there is a key or mouse event within a configurable
time window (e.g., 1 second). However, NAB fails to meet an im-
portant security property: it does not provide tight binding between
the message and the input events. It allows adversarial malware
to easily generate attestation proofs even if the input event is not
used to produce the intended message. Simply put, any keystrokes
and mouse clicks for arbitrary tasks (e.g., word processing) can be
abused to generate a human attestation proof for bot content. More
recently, UTP [15], a secure transaction confirmation architecture
provides a more accurate framework by generating the proofs to
only the messages that the human user wants. However, similar to
CAPTCHA tests, the system requires manual cooperation by the
human user for each attestation, which is tedious and inconvenient
to be applied to all network applications.

In this work, we present the design, implementation and evalua-
tion of HumanSign, a reliable human message attestation framework
for network applications without manual human intervention. Hu-
manSign strives to achieve following two security properties. First, it
securely generates a human attestation proof that is tightly bound to
the composed message itself. Only when the message is confirmed
to be produced from relevant hardware keystrokes, our framework
allows a human attestation for the message. Second, HumanSign
provides a guarantee that no attackers produce valid attestation signa-
tures unless they run the legitimate attester with hardware-generated
input events. To minimize the size of the trusted computing base
(TCB) and to isolate the human message attester from the rest of
the system, we run the attester in a Flicker [25] session via late
launch [11] and have the on-board TPM attest to the human message
and the integrity of the attester with its quote operation.

HumanSign places the root of trust on the input devices and a
TPM. One requirement for secure message binding is the ability
to prove if each input event is actually generated from the input
device. For this, we slightly update the input devices so that they
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generate a key proof (e.g., HMAC-SHA1 hash of the scan code and
its timestamp) for each input event, which is later self-verified when
there is a human attestation request from an application. While this
may be seen as an invasive modification, given the trend of putting
cryptographic operations into wireless keyboards [39], we believe
the security benefit outweighs small extra manufacturing cost.

The overall attestation procedure is described as follows. (a) The
client application that participates in HumanSign records all relevant
input keycodes and their proofs for a human message. (b) When
it needs a human attestation for the message, it launches a valid
attester in a Flicker session by feeding the key proofs along with the
message. (c) The human message attester first asks the input device
to verify the key proofs and when they are confirmed to be valid, it
requests a TPM quote signature on the message, its metadata, and
the attester hash. (d) Finally, the application sends the message with
the signature to the destination, and the receiving end verifies the
signature and enforces its own message accepting policy.

We provide the comprehensive implementation of HumanSign on
an Intel system that supports dynamic root of trust for measurement
(DRTM) with the late launch capability. Our prototype runs on a reg-
ular Linux operating system (linux-2.6.30.6) with about 4,600 lines
of the attester TCB and 205 lines of the patched keyboard driver
code to emulate the input key proof generation and verification. Our
evaluation shows that it takes 612 milliseconds to generate human
attestation proofs for typical email messages and 609 milliseconds
for IM chat messages, which is reasonable for an interactive environ-
ment. We find that the majority of the delay comes from employing
the trusted computing hardware: late launch execution and TPM
operations whose latency could improve as the technology further
matures.

2. GOALS
HumanSign wants to provide a reliable communication environ-

ment by filtering unwanted bot messages with human attestation.
We identify the design goals for a human attestation framework.

Transparency. The attestation process should be transparent to
the end users. HumanSign should allow automatic attestations of
human contents without any manual human verification such as in
the CAPTCHA tests.

Accuracy. A human attestation proof should attest to the human
activity involved in creating the intended message. Attackers should
not be able to generate a valid human attestation nor reuse an existing
attestation proof for an arbitrary message.

Generality. The framework should support all interactive net-
work applications that deal with human-typed messages. Also, the
attestation should not take too long to disrupt the interactivity.

Minimal TCB. The TCB of the framework should be small to
minimize any potential security holes [7, 30] and to facilitate quick
formal analysis on the source code of the attester. Also, it should
require minimal change in the network applications to benefit from
the framework. For this reason, we avoid the trusted hypervisor
approach using the virtualization techniques that provide sandboxed
execution environments for untrusted applications [10, 43].

Easy deployment. The framework should not depend on specific
OS or system software features. Any system that is equipped with
secure input devices, a system TPM, and the late launch capability
(e.g., available in Intel TXT [11] and AMD SVM extensions [4])
should be able to benefit from HumanSign.

We design the framework to be incrementally deployable such
that any participating clients and servers reliably exchange human
messages and filter unwanted bot traffic. If one party does not
employ HumanSign, it will fall back to existing filtering mechanisms.
This approach should benefit a number of message-based network

applications such as Email, SSH logins and commands, IM chat
clients, and HTML form submissions in Web browsing. While
our framework depends on new input device features for keycode
validation, many wireless keyboards already encrypt the keystrokes
using an algorithm like AES and have non-volatile memory [39].
We believe that extending it to support keycode validation will not
add up much cost.

3. THREAT MODEL
We consider the traditional client and server communication

model; the client generates messages with a human attestation, and
the server, the message recipient, verifies the attestation proof and
conditionally accepts the messages. We assume that HumanSign ap-
plications run on a client machine with trusted input devices (called
trustworthy input devices), an on-board TPM and the processors
that support DRTM. Trustworthy input devices run small embedded
software, called keycode daemon, that converts regular scan codes
into secure keycode events as described in Section 4.1. The daemon
is also used to verify the secure keycode stream during the attes-
tation process. The input devices, the TPM, and the late-launched
attester are trusted, and we assume that users do not mount hardware
attacks on the input hardware or the TPM.

The rest of the system (e.g., BIOS, bootloader, OS and client
applications) can be compromised by adversaries. The machine can
be infected with malware that monitors and intercepts the key events
from the input devices. Bots can attempt to assemble a message
out of the input keys, but they cannot generate valid input events by
themselves. While HumanSign ensures accurate human attestations,
it does not defend against other attacks such as leaking sensitive
information to external entities, or causing damage to the user data or
to the client software. HumanSign does not provide any protection
if malware obstructs the human attestation process and causes a
denial-of-service attack on the client applications. In that case, the
user could notice the problem and run anti-virus software or reinstall
the system to remove the malware. Finally, HumanSign does not
guarantee message integrity, but one can use existing protocols like
SSL/TLS to prevent message tampering or reordering.

4. HUMANSIGN DESIGN
The HumanSign framework consists of three components: (i) a

trusted client-side component that includes trustworthy input devices
and the software attester, (ii) untrusted constituents of the client host
that include the OS, and the HumanSign-aware applications that
produce human-typed messages, and (iii) the remote server that
receives client messages and verifies the authenticity of the human
attestation proof.

A human user types in a message using an untrusted client ap-
plication, and when the application needs a human attestation for
the message, it launches the attester in a Flicker session. Candidate
client messages can be any typed messages such as emails, IM con-
tents, SSH commands, typed URLs in a web browser’s address bar,
and HTTP POST messages. The attester checks whether the mes-
sage is indeed generated by the trustworthy input devices and issues
a TPM-based digital signature over the message and its metadata.
The client application sends the message along with its signature to
the server, and the server verifies the signature and enforces its own
message filtering policy.

4.1 Secure Keycode
To support tight binding between a message and input events, we

have each input keycode carry a key proof that verifies the source of
the input hardware. Figure 1 shows the format of the secure keycode
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scan code (e) 
1-3 bytes 

timestamp (t) 
6 bytes 

key proof (p) 
20 bytes 

Figure 1: Secure keycode format. A typical keyboard scan code
size ranges from 1 to 3 bytes.

that extends the existing scan code (e) with a timestamp (t) and a
key proof (p). t records the generation time of the input event in the
millisecond granularity (6 bytes to represent milliseconds passed
from the unix epoch). Timestamps prevent malicious bots from
replaying old keycode and differentiate the input events with the
same scan code value. p is a one-way cryptographic hash of the scan
code and the timestamp, namely, HMAC-SHA1(Ks, 〈e|t〉), where Ks
is a 20-byte secret key that is generated inside the input device and
never leaves it. We note that the secure keycode brings up to a 27
times blowup from the original scan code size. However, a secure
keycode is used only between the input device and the application
on a local machine. Since the keycode generation is bound by the
rate of human typing, we believe that the size overhead is bearable
given the trend of increasing memory capacity and CPU power.

The trustworthy input device can be implemented as an embed-
ded system with a low-powered processor and small non-volatile
memory. It runs a keycode daemon responsible for converting each
scan code to a secure keycode and for verifying the integrity of the
generated keycode when requested by the attester. The daemon
also manages the secret key (Ks) for the key proof. The secret key
rotates every n days while keeping the previous secret key in the
input device for verifying old keycode streams. A secure keycode
older than 2n days is assumed to be invalid for the purpose of human
attestation. n is configurable but we believe 30 days is a reasonable
number, which allows human attestation for the messages that are
typed within 60 days.

4.2 Human Message Attestation
The attester in HumanSign is responsible for achieving three ob-

jectives. First, it validates and vouches for human presence during
target message composition. Second, it ensures that only the appli-
cation that produces the message gets the corresponding attestation.
Third, it guarantees to the remote server (the message recipient) that
the attestation it generates is trustworthy. That is, malware on the
client machine should not be able to influence the attester nor forge
the attestation to circumvent the human verification process of the
message by the remote server.

Before explaining the detailed attestation process, we provide
a brief background on the TPM that is used to launch the Flicker
session as well as to generate a human attestation.

4.2.1 TPM Background
A TPM is an inexpensive security chip used for a number of se-

curity operations such as key (both symmetric and asymmetric) and
random number generation, secure data measurement, sealed stor-
age, remote attestation and so on. Two TPM operations that we use
are extend and quote that employ a set of TPM registers called Plat-
form Configuration Registers (PCRs). We denote m← SHA1(data)
as storing a one-way cryptographic hash of the data into a PCR,
m. The TPM extend operation is defined as iterative hashing like
PCRx ← SHA1(PCRx‖data). The TPM quote operation digitally
signs a set of target PCRs that have the relevant measurements. Be-
fore a quote, the TPM first generates a 2048-bit RSA key pair called
Attestation Identity Key (AIK) and uses its private key to sign the
PCRs. The public key of the AIK is certified by the TPM vendor’s

Privacy CA (PCA) TPM 

PCApub(EKpub, AIKpub), EKpub, AIKpub 

EKpub (AIK certificate) 
Decrypt AIK certificate 

(1) 

(2) 
(3) 

(4) Generate AIK certificate 

Figure 2: AIK certification. A fresh AIK public key is certified
(one-time operation) before starting the attestation process.

certifying authority or Privacy CA as shown in Figure 2. When a
TPM generates an AIK, it encrypts the public keys of the AIK and
the root Endorsement Key (EK) (that is burned into the TPM when
it is manufactured and its private key never leaves the TPM) with
the public key of Privacy CA and sends the bundle to Privacy CA.
Privacy CA decrypts the bundle, checks if the public key of the EK
is valid since it holds the database of EK public keys of all published
TPMs. It then signs the public key of the AIK to generate an AIK
certificate and returns the AIK certificate encrypted by EK’s public
key to the TPM. This process guarantees that only a valid TPM
produces an unencrypted AIK certificate. With this AIK certificate,
a remote party can validate the TPM quote signature.

According to the TPM v1.2 specification, a TPM includes 24
PCRs divided into static and dynamic sets. The static PCRs (0-16)
can be used for measurements, but the dynamic PCRs (17-23) can
be measured or reset only if the CPU is in the late-launched state.

4.2.2 Late-Launched Environment with Flicker
HumanSign runs the attester in a Flicker session that employs

the DRTM using the late launch CPU capability. Late launch essen-
tially micro-reboots the machine by temporarily suspending the run-
ning OS. It creates a completely isolated execution environment for
security-sensitive code by disallowing direct memory access (DMA)
to physical memory by random devices and by disabling hardware
interrupts to prevent previously executing code from regaining the
control and interfering with executing the security-sensitive code.
A special CPU instruction (GETSEC[SENTER] and SKINIT for
Intel and AMD CPUs respectively) initiates late launch, which
re-initializes all CPU and register states for a fresh execution en-
vironment, and resets dynamic PCRs of a TPM to 0. Then, Intel
TXT extends the measurement of the security-sensitive code into
PCR18. This allows the remote party to verify which piece of code
was actually running in the late-launched environment.

Flicker allows running the security-sensitive code with minimal
TCB in the late-launched environment by removing the dependency
on the large virtual machine monitor as TCB. It provides small stub
code (called SLB Core) that sets up and tears down a Flicker session
and that performs necessary steps to make sure that the right code is
running. HumanSign uses Flicker to abstract the steps needed for
late launch as well as to benefit from minimal TCB. Flicker also
provides a few TPM and cryptography libraries that HumanSign
uses in the late-launched environment.

4.2.3 Content for Attestation
The HumanSign application manages the typed messages for hu-

man attestation. It is responsible for collecting the secure keycodes
corresponding to the portion of the message whose content is later
attested by the HumanSign framework. One challenge here is that
some part of the legitimate message is not directly typed by a human
user. For example, replying to an email may include the received
content or a mail client could automatically add text decoration
typically found in the rich text format (RTF). Copied and pasted text
may not have secure keycodes or may include invalid keycodes that
have expired.

To address the problem, HumanSign employs two techniques.
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Delivered-To: john@abc.com 

Received: from x.x.x.x (SquirrelMail authenticated user jim) 

by www.example-mail.com with HTTP; Sun, 1 Jan 2012 

00:00:00 +0000 

Message-ID: 

<6bc8101e1d9a12a47884c5ff3daacc1c.squirrel@example-

mail.com> 

Date: Sun, 1 Jan 2012 00:00:00 +0000 

Subject: Test 

From: jim@example-mail.com 

To: john@abc.com 
Reply-To: jim@example-mail.com 

User-Agent: SquirrelMail/1.4.19 
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Importance: Normal… 
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Figure 3: An example of human message attestation. Given the
message and the corresponding secure keycodes, the attester
first verifies the keycodes, and generates an attestation sum-
mary and a CodeTimeArray (or a keycode bitmap) that identi-
fies the portion of typed keycodes.

First, the application identifies and attests to only the portion of the
text whose keycodes are valid. Other parts are replaced by null key-
codes (〈0,0,0〉) for the purpose of attestation. In our email analysis
in Section 6.4, we find that 90% of human-typed emails have at least
13 valid keycodes in the mail body, which still provides significant
evidence of human presence. To identify which characters are typed
by a human user, HumanSign generates and signs the bitmap of
valid keycodes for the message (e.g., 0: not typed, 1: typed). For
better accuracy (possibly at the cost of privacy), the application
optionally chooses to send the array of the timestamps of the entire
message. We call it CodeTimeArray of the message, which consists
of the scan codes and offset-based timestamps corresponding to
the original secure keycodes. The offset-based timestamp reduces
the field size by taking the offset from the oldest timestamp in the
message. Second, besides attesting to the typings in the message,
HumanSign produces metadata called attestation summary that has
the typing statistics for the message. Table 1 shows the attestation
summary, which includes the start and end times of message com-
position, total and valid keycode counts, and the number of in-order
keycodes that are typed in the same order as that of the text. The
attestation summary is signed by the HumanSign attester and is
delivered as extra information to the remote server. If there are not
enough valid keycodes in the message, or if the number of in-order
keycodes is too small for the message, the server can choose to fall
back to a existing bot filter. Section 6.4 analyzes the issue in detail.

We note that HumanSign attestation brings a size overhead: 580
bytes for a TPM quote signature, 26 bytes for the attestation sum-
mary, and either size(message)/8 bytes for the keycode bitmap or
size(message)× (1+ n) bytes for the CodeTimeArray, where n is
the size of an offset-based timestamp. For example, for n = 3, Code-
TimeArray can cover 19.4 days with the 100 ms offset granularity
(to f f ), which should be enough for most short messages. To reduce
the size overhead further, one can compress the attestation results.

4.2.4 HumanSign Attestation Process
Figure 4 shows the step-by-step HumanSign attestation process.

(1) The HumanSign client application passes the message, M, and

FIELD DESCRIPTION

Base timestamp the oldest timestamp in the keycodes
Final timestamp the latest timestamp in the keycodes
Timestamp offset size byte count for an offset-based timestamp
to f f offset-based timestamp granularity
Valid keycode count total # of valid keycodes
In-order keycode count total # of in-order keycodes
Total keycode count total # of keycodes

Table 1: Attestation summary: timestamps are 6 bytes, offset
size and to f f are one byte, and keycode counts are 4 bytes.

its corresponding secure keycodes, S, along with the attester file
path to the late launch startup module. (2) The startup module loads
M, S, and the attester to a well-known physical memory address,
sets up the processor registers for late launch, and de-schedules all
processors except the bootstrapping CPU (CPU0). CPU0 saves the
current machine states and executes a special CPU instruction that
suspends the running OS, and passes the control to the late launch
bootstrapping module1 (known as the SINIT authenticated code
module in Intel CPUs). The SINIT module extends the attester,
A, into PCR18 and its own module, I, into PCR17. Measuring I is
necessary for checking the version of the SINIT module since it
is often updated against newly-discovered vulnerabilities [51, 52].
(3) The control is transferred to the attester, and it asks the trust-
worthy input device to validate S with M. If all valid keycodes
match those in M, the attester generates the attestation summary,
T , and either the valid keycode bitmap, B, or the CodeTimeArray,
C, depending on the attestation type. It then extends PCR18 with
(M‖T‖B) or (M‖T‖C). (4) The attester issues a TPM quote oper-
ation on both PCR17 and PCR18 using the private key of the AIK.
Note that PCR17 takes on SHA1(0x0020‖SHA1(I)) and PCR18 has
SHA1(X‖SHA1(M||T ||(B or C)) where X = SHA1(0x0020‖SHA1(A)).
The quote result would be AIKprivate(PCR17, PCR18), and we call
it content proof of the message. It is temporarily stored by the at-
tester before returning to the application. (5) Finally, the attester
extends both PCR17 and PCR18 with a random nonce to prevent
further TPM quote operations over the same measurements. Then,
it passes content proof, attestation summary, and keycode bitmap or
CodeTimeArray back to the application. If attestation fails for any
reason, an error code is returned instead. When late launch exits,
the startup module restores the previous machine state and resumes
the normal OS.

One potential problem lies in how we authenticate the trustworthy
keyboard in the protocol. An attacker may attempt to build his
own malicious keyboard that validates every keycode proof that
his colluding bot on the local host randomly generates. One way
to prevent this attack is to use the similar authentication technique
employed by TPMs. The keyboard manufacturer can assign an
asymmetric key pair to the keycode daemon and register the public
key with Privacy CA. Whenever the keycode daemon handles the
keycode validation request, it signs the result with the private key,
and the attester verifies it. This inevitably increases the attestation
latency (about 300 ms when you use a TPM inside the keyboard),
but it would ensure the authenticity of the keycode validation.

Another concern is that HumanSign may hamper user privacy.
While we can anonymize the AIK of the TPM with direct anony-
mous attestations (DAA) [8], the HumanSign attestation intention-
ally exposes which character in the message is typed by a human
user. We believe this fine-grained typing information is the key to
1AMD does not require an additional bootstrapping driver as the
built-in SVM extension alone executes the measured launch envi-
ronment.
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board. (4) The content proof is generated after TPM_Extend and TPM_Quote operations. (5) Finally the message, M is transmitted
with the Attestation Summary, T, CodeTimeArray C and the content proof.

Human Verified 

Spam Ham 

a 

Human Verified 

Spam 

Ham Traditional Filter 

Ham 

b 

Traditional Filter 

Spam 

Spam Human Verified 

Ham 

c 

Y N Y N 

Y N Y N 

Y N 

Figure 5: HumanSign-based verification policies - (a) illus-
trates a filtering policy where only human verification suffices.
SSH or IM servers may adopt this policy to prevent logins by
bots. (b) shows a policy that uses human verification as the first
filtering criterion. It would minimize false positives but some
human-typed spams may get through. (c) would minimize false
negatives by detecting the human-typed spams and filtering the
bot-generated spams by human verification.

differentiating human messages from bot-generated ones. One can
choose to use keycode bitmap instead of CodeTimeArray, which ex-
cludes the timing information of each keycode. However, anonymiz-
ing the sender itself is difficult since the recipient of emails, IM chat
messages, SSH commands and etc. typically know the message
sender. Also, exposing the hash of the late-launched software stack
is necessary to verify the authenticity of the attestation by the remote
server.

4.2.5 Attester Management
We envision a universal attester that provides human message

attestation to all interactive text-based network applications. A uni-
versal attester is possible since the attestation process does not have
any dependency on the application context. It can be managed
as public software subject to careful security review, and can be
indexed by a trusted third-party such as the National Software Ref-
erence Library (NSRL) [22], which currently maintains a database
of fingerprints of widely-used software applications.

4.3 Human Message Verification
The remote verification process is as follows. The server first

checks whether the AIK used to sign the PCRs actually comes from
a valid TPM by verifying the AIK certificate. It then determines
whether the software stack used in the attestation is authentic. This
is verified by validating the content proof with the attester, the SINIT
module, and the message. This step would prevent a rogue software
agent from invoking an isolated execution environment with the
attester code of its own choosing.

Once the verification passes, the remote verifier applies its own
filtering policy with supplementary information. For example, if the
message composition time exceeds a certain threshold, if there are
too many out-of-order keycodes in the message or if the copy and
pasted keycodes in a message exceed a threshold, the human verifi-
cation filter flags the message as suspicious. Figure 5 shows three
plausible bot-message filtering policies with HumanSign. Some
services (e.g. SSH server) could enforce a strict policy to allow only
human-attested messages, but other services (e.g., Email server)
may adopt a hybrid approach with traditional content-based spam
filters. Human verification can be configured to minimize either the
false positives or negatives. Also, in case the client message does
not include a human attestation, it can fall back to existing filtering
mechanisms, allowing incremental deployment.

We note that HumanSign provides a reliable way to identify any
portion of text the human user actually typed in and to segregate
any part that is automatically generated or copied and pasted. Hu-
manSign itself does not guarantee to filter all spams (e.g., a spam
email can be typed directly by a malicious attacker on his local
host!). However, a reasonable policy in the remote verifier would
suppress most of spams and deliver human-typed messages reliably
to the other party. To assist with the policy, we further analyze the
characteristics of human typings in section 6.4.

5. IMPLEMENTATION
We implement the HumanSign framework on an Intel machine

with the TXT capability. We modify the USB keyboard driver on
Linux 2.6.30.6 to export the secure keycodes directly to HumanSign
applications. We also implement a common human attestation
library that assists with the client application to invoke the attester in
the measured late launched environment. Table 2 shows the number
of code lines for each module.
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MODULE NAME LANGUAGE SLOC

Linux USB Keyboard Driver C 205
Attester C/Assembly 4,683
Flicker Startup Kernel Module C 3,383
Thunderbird Attestation Add-on XUL/JS/C++ 329
Dropbear Attestation Extensions

Client Attestation Module C 588
Server Verification Module C 112

Pidgin-2 Plugins
Attestation Plugin C 421
Verification Plugin C 352

Table 2: Number of source lines of code (SLOC) for human at-
testation modules and sample application extensions using sloc-
count [49]. XUL stands for XML User Interface Language and
JS is Javascript.

5.1 Secure Keycode Keyboard Driver
As a proof-of-concept, we modify the Linux USB keyboard driver

to expose the secure keycodes via the sysfs file system interface,
which requires 205 lines of driver code change. We also develop
a few HumanSign application extensions that pick up the secure
keycodes from it. The real trustworthy input devices could run the
keycode daemon in the wireless USB transceiver or in the keyboard
itself to export the keycodes directly to the device driver. We note
that the driver that relays the keycodes to the applications need not
be trusted but the attester need to send keycode validation requests to
the input devices safely. For easy migration, we have implemented
an ioctl() function by introducing a new request code number
for /dev/event device nodes that delivers the secure keycodes so
that legacy applications could adapt to our framework with minimal
code change.

5.2 Attester Implementation
We implement the attester that handles human message attesta-

tion requests. The current attester is 4,683 SLOC where the core
logic takes up 1,173 lines while the cryptographic libraries (such as
HMAC-SHA1) consume 3,510 lines. In this implementation, we
have the attester verify the secure keycodes since the real trustworthy
input device is unavailable.

We develop our attester based on Flicker-0.2 while the latest
version at the time of writing is Flicker-0.5. We choose Flicker-0.2
for two reasons. First, we want to keep the size of the framework as
small as possible2. Second, we do not see that Flicker-0.5 improves
the performance since it mostly focuses on integrating Intel/AMD
and Windows/Linux modules into a unified code base.

When the attester is first installed, the installation program ini-
tializes the TPM for HumanSign. It asks the TPM to generate
an AIK pair and to load it to the TPM’s volatile memory, and it
sends the AIK public key to a Privacy CA for certification. We use
privacyca.com to generate a level-1 X.509 AIK certificate that is
later sent to the remote server as part of human attestation proofs.

5.2.1 Flicker Optimizations for Fast Response
We find that the Flicker-0.2 module often takes more than a sec-

ond (sometimes up to 4.3 seconds in our experiments) to execute a
single attester session in the late launched environment. We apply
two optimizations that significantly reduce the attestation latency.
The first technique is to enable the caching mode in the Flicker envi-
ronment. Currently, Flicker (including the latest version) disables

2Flicker-0.5’s kernel startup module adds 1,858 more lines of code
than that of Flicker-0.2.

TASK LATENCY

Late Launch Initialization (GETSEC[SENTER]) 130 ms
Late Launch Exit (GETSEC[SEXIT]) 80 ms
TPM Quote 365 ms
TPM Extends 30 ms
Total 605 ms

Table 3: Latency breakdown for hardware instructions in-
volved in late launch. Before the first TPM_Quote, one-time
operation, TPM_LoadAIK_Key is needed to load the AIK key.
TPM_LoadAIK_Key takes about 2 seconds.

the caching mode bit in the memory type range registers (MTRRs)
managing the memory region that hosts the measured code to be
launched. This is mainly because the general-purpose Flicker frame-
work would otherwise have to rely on the untrusted OS to pass the
MTRR information that may lead to cache poisoning attacks [36,50].
In HumanSign, wrong MTRR information would not produce a valid
content proof since both the attester and the SINIT module are mea-
sured and signed, and are verified by the remote server. So, we
activate the write-back memory caching mode with sanity checks
that guard against wrong MTRR information. We find that caching
improves the memory-intensive operations significantly by a factor
of 2.5. For example, we could reduce the latency of SHA1 hash
calculation of 100K secure keycodes from 725 milliseconds to 291
milliseconds.

The second technique is to adopt lazy re-enabling of the CPU
cores when the Flicker session ends. Flicker needs to disable all
CPU cores except the bootstrapping processor (CPU0) when it starts
the late launch environment. The CPU disabling process collec-
tively takes about 83 milliseconds on our Intel processor. When
the Flicker session ends, it has to re-enable all de-scheduled CPU
cores. However, we see that re-enabling each core also takes a
relatively long time (about 100 milliseconds on the same Intel CPU)
and what is worse is that only one core can be enabled at a time.
The delays are coming from a series of high latency tasks such as
calibrating the frequency of the core, registering the advanced pro-
grammable interrupt controller (APIC) and re-scheduling processes
onto it. Unfortunately, this presents poor user experience since the
system would look frozen during the time. To hide this latency,
HumanSign re-enables only one CPU core right after the Flicker
session, and postpones re-enabling the rest until the CPU load falls
below a certain threshold. We note that this technique does not
solve the latency problem completely, but it provides much better
experience to the human user.

6. EVALUATION
We evaluate the performance of HumanSign with a few popu-

lar text-based application extensions that we have developed. We
first measure the delays for keycode validation and total message
attestation for typical interactive applications. We then look into the
human typing patterns in real email, IM, and SSH messages, which
would help configure a reasonable filtering policy for the remote
verifier.

6.1 Microbenchmarks
We first show the microbenchmarks with secure keycode vali-

dation and attestation performance. We run the tests on an Intel
machine with a Core i7 CPU 870 (2.93 GHz), 4 GB physical mem-
ory, and an Infineon TPM version 1.2.3.16. All tests are run 10
times and we show the average values. The line in Figure 6 shows
the secure keycode validation delays as the message size increases.
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Figure 6: Keycode validation (line) and total attestation (bar)
times over various message sizes. Measured on a 2.93 GHz, In-
tel Core i7 870 machine.

The delay is within 10 milliseconds when the messages size is under
1 KB and it grows more or less linearly when the size is over 10 KB
as the HMAC-SHA1 hash calculation dominates the performance. It
takes about 32 milliseconds for 10 K keycodes, which is reasonable
for most short messages. The bars in Figure 6 present the total
attestation response times for the corresponding keycode sizes. We
mark the average IM and email message sizes drawn from our user
studies in Section 6.4. The results show that the majority of the
attestation time is spent on late launch execution involving TPM
operations.

Table 3 shows the breakdown of the late launch operation laten-
cies. We find that the TPM operations take up most of the attestation
time. A TPM quote takes about 365 milliseconds while an extend
operation takes 30 milliseconds. The TPM quote is slow because
it needs to calculate a 2048-bit RSA digital signature on a 33 MHz
TPM processor. About 35% of the attestation time is spent on the
special instructions that initialize and tear down the late launch envi-
ronment. GETSEC is the Intel processor’s late launch instruction
where SENTER and SEXIT are the two opcodes that start and exit
the late launch environment. Overall, the attestation delay still needs
to be improved for highly-interactive applications like IM and SSH,
but it is in the reasonable range for email message composition.

6.2 Human Attestation for Email Messages
To apply the human attestation to email, we develop a HumanSign

application extension based on Mozilla Thunderbird 3.1.17 [32]. We
choose Thunderbird because it is a popular email client with a rich
set of developer APIs and libraries, but we believe our extension can
be easily adapted to other email clients as well. The extension picks
up secure keycodes from the modified keyboard driver each time
a human types into the email composition window. The keycodes
for the message body and email header fields (e.g., ‘To:’, ‘From:’
and ‘Subject:’) are stored in memory by the extension. It is re-
sponsible for keeping all the characters the human types in order
even during revisions. The front end of the extension, written in
Javascript, handles input events and calls the functions in the back
end while the back end uses a XPCOM C++ component to manage
the secure keycodes in the edit window and invokes the HumanSign
attester in a Flicker session. The extension requires only 329 lines of
code. Clicking the ‘Send’ button initiates the attestation process that
generates a content proof, a keycode bitmap or a CodeTimeArray,
and the attestation summary for the message. The content proof
and the attestation summary are sent under a custom email header,
‘X-Attestation:’, while the bitmap or the CodeTimeArray is sent as
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Figure 7: HumanSign verification performance compared with
SpamAssassin v3.3.1. Note that the Y scale on the left is loga-
rithmic.

an email attachment to the destination server.
We also implement a HumanSign message verification filter for

Postfix 2.5.5-1 [35]. The filter verifies the content proof and classi-
fies the email messages as human-generated or unattested. Figure 7
compares the performance of the Postfix human verification filter
with that of SpamAssassin [44], a popular spam filter inspecting the
content and the network properties of an message. We configure
SpamAssassin with an auto-learning Bayesian classifier. SpamAs-
sassin shows a reasonable performance for small message sizes, but
its overhead becomes noticeable for large messages. HumanSign
curbs the delay at 189 milliseconds for all message sizes, showing a
factor of 16 to 25 latency improvement over SpamAssassin.

6.3 Human Attestation for SSH and IM
We have implemented HumanSign attestation/verification exten-

sions for the Dropbear SSH client/server suite [12] and Pidgin IM
messenger [2]. These two applications bear the similarity in that
their message sizes are typically small and the sessions are highly
interactive. The extensions share most of the code as a library
and support two operational modes - (i) for attesting to the human
typings only for password/key passphrase at login and (ii) for all
subsequent commands/messages for enhanced security at the cost
of slow operations.

Human-typed password attestation: The extension requires
that each login attempt is coupled with a human proof. For this,
we have the extension call the attester right after the user enters the
password. Message attestation requires the human user to physically
type in the password/passphrase, which would prevent automated
brute-force password cracking attacks.

Per-line attestation: In more secure environments, the client can
be asked to attest to the typings of each message line. This would
prevent the authenticated SSH/IM sessions from being abused by
an automated system after login, but it could harm the interactivity
due to long attestation delays. One optimization that we have not
applied yet is to postpone the attestation for a few seconds or until
enough keycodes are gathered over multiple messages/commands.

If the Nagle’s algorithm [33] is turned off, each typed character
in an SSH session can be sent in a different packet. To avoid
per-character attestation, we link the human attestation with each
message. That is, we have the extension collect the secure keycodes
till it meets a newline character, and generate the attestation for
the full command. The server, on the other hand, maintains a per-
connection state machine and validates each command against a
human proof before executing it. The HumanSign extensions require
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0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

le
m

en
ta

ry
 C

D
F

 

Valid Keycode Count 

85th %: 3 keycodes  

50th %: 10 keycodes  

(d) IM: Valid Keycode Count Distribution

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 10 20 30 40 50 60 70 80 90 100

C
D

F
 

Out-of-order Keycode Ratio per Message (%) 

 

98.1th %: 0 %  
99.9th %: 74 %  

(e) IM: Out-of-order Keycode Ratios
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(h) SSH: Out-of-order Keycode Ratios
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Figure 8: Distributions of human typing pattern statistics. Email: (a), (b), (c) / IM: (d), (e), (f) / SSH: (g), (h), (i)

STATISTICS EMAIL IM SSH
Total Number of Messages 4,552 39,617 670
Average Message Size (bytes) 1,215 14 10
Median Message Size (bytes) 523 10 10
Average Composition Time (secs) 278 9.1 2.6
Median Composition Time (secs) 66.3 3.7 2.1
Average Modified Words per Message (%) 1.3 0.2 -

Table 4: Overall statistics on human-typed messages

588 and 421 lines of code change for the SSH and Pidgin clients,
and 112 and 352 lines for the verifying IM and SSH servers. The
implementation took less than two weeks while the majority of the
time is spent on learning the SSH/XMPP protocol details.

6.4 Human Typing Patterns
To help set up reasonable filtering policy, we have measured

typing patterns of human users in emails, IM messages, and remote
SSH sessions. We develop customized Mozilla Thunderbird and
Pidgin that measure the timestamp of each key event as a user types
in the message. We also modify OpenSSH [1] clients to log the
timing information of typed password characters. We distribute
the extensions to 13 Thunderbird users, 8 Pidgin users, and 9 SSH
users and have monitored the typing habit for 12, 6, and 1.5 months
respectively. We have collected 4,552 emails, 39,617 IM messages,
and 670 SSH login (failed and successful) attempts in total for
analysis. The overall statistics are shown in Table 4.

Figure 8(a) shows cumulative percentages of emails that have at
least X = n valid secure keycodes in the message. We find that half
of all emails have 93 or more valid keycodes while 90% of them
have at least 13 valid keycodes. Not surprisingly, the number of
valid keycodes tends to increase as the message size grows, but we
do see some large messages have only a few valid keycodes, which
we suspect were forwarded or replied with a short note. Figure 8(b)
shows the fraction of out-of-order keycodes in the collected emails.
50% of all emails have at most 2.6% out-of-order keycodes while
90% of them carry at most 8% out-of-order keycodes. These seem
to be mostly for fixing typos in an email. Figure 8(c) indicates that
90% of the emails are written within 535 seconds while 99% finish
within 3,330 seconds.

Pidgin messages tend to be much shorter than emails with a
smaller valid keycode count per message. It is reflected in Fig-
ure 8(d), which shows that 15% of all messages have at most 3 valid
keycodes. However, few characters are typed out of order as only
1.9% of all messages include non-zero out-of-order characters, as
shown in Figure 8(e). This implies that the IM users do not fix typos
nor change words as frequently as in email, which would simplify
the filtering policy of IM-based bot messages. Also, the message
composition time is short, with 95% of them typed within 19.5
seconds as shown in Figure 8(f).

The valid keycode count distribution in SSH passwords shows
a different shape compared to the exponential size decrease as in
email and IM messages. Figure 8(g) shows that most instances
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PROTOTYPE TRANSPARENCY GENERALITY ACCURACY TCB (SLOC) PLATFORM
Not-a-Bot [19] Yes Yes 1-sec window vulnerability ∼30K Xen VM
CAPTCHA [6] No Web only Breakable N/A N/A
Kill-Bots [24] No Web only Breakable N/A N/A
SORBS [40] Yes Email Zero-day vulnerability N/A N/A
Bumpy [26] No Web authentication Yes ∼10K Flicker
UTP [15] No Web only Yes ∼2.3K Flicker
HumanSign Yes Yes Yes ∼4.9K Flicker

Table 5: Comparison with other works with similar goals

are concentrated between 10 and 13 characters, which implies that
other keycode counts are due to typing mistakes. It also reflects the
user’s behavior to have a password long enough to guarantee strong
security but not too long for typing convenience. As expected, we
see that SSH passwords do not include any out-of-order keycode
since users tend to retry rather than correct their password when
logging into SSH (Figure 8(h)). Figure 8(i) shows that the password
typing time is the shortest among all three services, with 95% of
them taking less than 8 seconds.

Based on our dataset, we can configure the servers to accept
99.02% of human-typed emails that have at least 13 secure keycodes
whose out-of-order keycode ratio is below 25%, which is typed
within an hour. Also, we can cover 99.04% of human IM messages
that have at least 2 secure keycodes even if we allow 25% out-
of-order keycodes in the message that is typed within 60 seconds.
99.32% of SSH passwords can be accepted if the server is configured
to allow only human-typed characters without out-of-order keycodes
that are typed within 20 seconds.

7. DISCUSSION
We discuss various attack scenarios and defense strategies here.
Frankenstein attacks: Some intelligent spamming bots build

grammatically-coherent messages from a collection of random words [55].
In HumanSign, bots may attempt to glean secure keycodes by eaves-
dropping legitimate keystrokes, and try to generate spam messages.
However, we suspect that producing meaningful spam messages is
hard without bloating the out-of-order keycode ratio in the message.
Also, the old keycodes become invalid after two rounds of secret key
rotations, preventing the bots from harvesting the valid keycodes
indefinitely. Another possible attack is to add a small spam text
to a bunch of unrelated human-typed characters that are blindly
collected by a malicious bot. To prevent this attack, the email server
could enforce a policy to confirm that at least a certain number of
characters are typed in the “To:” header field with some timing
bound, or the mail client can optionally highlight the portion of the
text that is not human-attested.

Replaying attacks: A human spammer can attempt to compose
a spam and send the same attested message to many recipients au-
tomatically. Since HumanSign attests to the typing of “To:” and
“From:” email headers, the spammer may not send the same mes-
sage to multiple locations without manually typing in the addresses.
Mailing lists are non-trivial to defend against since HumanSign
cannot tell spamming attempts from the legitimate usages. But it
would still require typing in the original message for sending to each
mailing list address.

Remote message composition: Humans can use Webmails to
type in the email content over HTTP. Webmails typically use the
HTTP POST method to send the email content in the request body.
Since the HumanSign attestations are embedded in the email content
(email headers and an attachment), they can be handled in the same
way as in our Thunderbird extension. Attesting to the messages on

remote desktop protocols [3, 29] require the HumanSign applica-
tions to invoke the attester on the local machine equipped with the
trustworthy input device. While it would complicate the process, it
is not impossible.

Mouse events: HumanSign does not support the tight binding
between the messages and mouse events. We find it very difficult
since the messages produced by mouse events (e.g., HTTP GET
requests) have no inherent bearing with the events themselves. One
strawman’s approach would be to record and send all mouse events
and the machine states that resulted in the message and to verify the
resulting message by replaying the same application locally at the
server, similar to [20]. However, due to high overheads, it would
not be adequate for interactive applications. We leave this issue as
our future work.

8. RELATED WORK
In this section, we compare our work with previous efforts. We

explain previous spam detection techniques based on network-based
fingerprinting and content analysis, other human detection approaches,
and recent technologies that employ late-launch execution environ-
ments. Table 5 summarizes the features supported by HumanSign
and other works.

Network-based fingerprinting: There have been many works
that detect spamming bots by analyzing their network behavior.
DNS blacklisting [40, 41, 45] has been useful for blocking spams
from well-known spamming sources. However, its effectiveness has
decreased over time since botnets spread the points of presence over
tens to hundreds of thousands of infected zombie machines. Also,
some slaves in the botnets are reported to send only one spam per
day on average [37], making it challenging to identify the spamming
bots by the volume.

SpamTracker [37, 38] learns the behavioral pattern of the bot
spammers (such as the time of the day of the sent spam, its size,
etc.) to distinguish legitimate emails from spams. Their follow-
up, SNARE [21], is a distributed spam filtering engine that uses a
classifier based on supervised learning. Although these techniques
have greatly improved the accuracy of spamming bot detection in
general, they depend on the statistical properties of the current
spams that are subject to change over time. In contrast, we focus on
a deterministic human detection method that can potentially achieve
zero false positive regardless of the bot traffic pattern.

Signature analysis on message content: Existing spam filters
typically rely on a combination of DNS blacklisting and content-
based analysis to filter spams. For example, SpamAssassin [44]
tests a number of network properties to derive spam signatures. It
also uses the services that identify frequently-used spam URLs [48]
and DNS blacklist such as SORBS [40]. While this approach is
effective in detecting common spams, sophisticated botnets could
bypass such filters by orchestrating short-lived spam campaigns and
by iteratively using obfuscated URL shortening services. In addi-
tion, SORBS fails to protect against zero-day attack and its usage
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is limited to emails. AutoRE [53] is a spam signature generation
framework that detects spams from botnets as well as the botnet
membership. It characterizes spamming botnets by spam content
based on URL signatures that are obtained by machine learning.
Other approaches [18, 55] map botnets using the spam email traces.
The main drawback of these methods is that they do not guaran-
tee deterministic prevention of botnets because they use machine
learning techniques that are sometimes prone to false errors.

Human detection: Human detection has been a popular tech-
nique in network intrusion detection and prevention. Reverse Tur-
ing tests via manual human computation have been widely used
in the Web through CAPTCHA [5, 6] for the past decade. Kill-
Bots [24] also leverages CAPTCHA tests to authenticate human
users at flooding attacks and allows connections through SYN cook-
ies for a limited number of times. However, it has been shown that
the CAPTCHA tests can be abused with cheap human labor [31] or
some weak tests can be subverted by intelligent bots [17]. While we
expect that CAPTCHA will be still useful in many areas, it would
be impractical to ask for a CAPTCHA test each time a human user
sends an email or an IM message. Park et al. [34] proposed iden-
tifying human Web traffic transparently by obfuscating Javascript
mouse and key event handlers. They monitor if the Web page is
viewed by humans by detecting mouse or keystroke events and by
verifying if the Web request streams are coming from popular Web
browsers. Gummadi et al. developed NAB [19] that certifies human-
generated activity at the time of message creation. The NAB attester
tags each request with an TPM-based signature if the attestation re-
quest is made within a small amount of time of legitimate keyboard
or mouse activity. Although this helps identify the human traffic,
NAB does not provide tight binding between the message and the
input events, allowing a smart attacker to generate a fake attestation
proof for an unrelated message.

HumanSign extends our previous work that uses a human attes-
tation proof from the TPM-laden input devices [23]. In this work,
we complete our framework by adopting the DRTM-based Flicker
environment for secure execution of the attester, thus removing the
need to introduce a TPM chip in devices themselves.

Late-launched secure environment: A number of projects have
employed late launch to enhance the security of their systems.
TBoot [46] uses late launch to securely boot a measured operat-
ing system. Bumpy [26] uses an enhanced version of Flicker that
guarantees confidential passage of sensitive data from a client for
authentication purposes. Unlike HumanSign, however, Bumpy re-
quires the human user to type in special characters to alert a secure
attestation request. TrustVisor [27] is a special-purpose thin hyper-
visor that safely executes security-sensitive code without late launch.
TrustVisor could eliminate the heavy late launch operations per each
HumanSign attestation but it requires a virtual machine for proper
memory isolation. UTP [15] provides an accurate framework for
Web authentication as it uses the isolated attester to generate the
proof for human presence by introducing a test per request. How-
ever, their solution is limited to Web transactions and it would be
inconvenient to manually type the characters for each Web transac-
tion.

9. CONCLUSION
We have presented HumanSign, a novel human message attes-

tation framework that allows the message recipient to prove the
human existence at message composition. Unlike previous works,
HumanSign tightly binds the input events to the message content,
and leaves little room for attestation forgery by malicious bots. We
have generalized the architecture so that the human attestation can
be provided to any text-based network application service. Our

experience with Email, SSH and IM applications shows that it is
easy to write HumanSign extensions and to benefit from the frame-
work. Our measurements on the current implementations show that
HumanSign does add some noticeable delay due to heavy security
hardware operations, but it is in the reasonable range for emails or
password typing for SSH and IM applications.
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