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Abstract. In this paper, we present the design and implementation
of Haetae, a high-performance Suricata-based NIDS on many-core pro-
cessors (MCPs). Haetae achieves high performance with three design
choices. First, Haetae extensively exploits high parallelism by launch-
ing NIDS engines that independently analyze the incoming flows at high
speed as much as possible. Second, Haetae fully leverages programmable
network interface cards to offload common packet processing tasks from
regular cores. Also, Haetae minimizes redundant memory access by main-
taining the packet metadata structure as small as possible. Third, Haetae
dynamically offloads flows to the host-side CPU when the system expe-
riences a high load. This dynamic flow offloading utilizes all processing
power on a given system regardless of processor types. Our evaluation
shows that Haetae achieves up to 79.3 Gbps for synthetic traffic or 48.5
Gbps for real packet traces. Our system outperforms the best-known
GPU-based NIDS by 2.4 times and the best-performing MCP-based sys-
tem by 1.7 times. In addition, Haetae is 5.8 times more power efficient
than the state-of-the-art GPU-based NIDS.

Keywords: Many-core processor, Network intrusion detection system,
Parallelism, Offloading

1 Introduction

High-performance network intrusion detection systems (NIDSes) are gaining
more popularity as network bandwidth is rapidly increasing. As traditional
perimeter defense, NIDSes oversee all the network activity on a given network,
and alarm the network administrators if suspicious intrusion attempts are de-
tected. As the edge network bandwidth of large enterprises and campuses ex-
pands to 10+ Gbps over time, the demand for high-throughput intrusion detec-
tion keeps on increasing. In fact, NIDSes are often deployed at traffic aggrega-
tion points, such as cellular core network gateways or near large ISP’s access
networks, whose aggregate bandwidth easily exceeds a multiple of 10 Gbps.
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Many existing NIDSes adopt customized FPGA/ASIC hardware to meet
the high performance requirements [4,13]. While these systems offer monitoring
throughputs of 10+ Gbps, it is often very challenging to configure and adapt
such systems to varying network conditions. For example, moving an FPGA ap-
plication to a new device requires non-trivial modification of the hardware logic
even if we retain the same application semantics [25]. In addition, specialized
hardware often entails high costs and a long development cycle.

On the other hand, commodity computing hardware, such as multi-core pro-
cessors [3, 15] and many-core GPU devices [2, 9], offers high flexibility and low
cost because of its mass production advantage. In addition, recent GPU-based
NIDSes [23,34] enable high performance, comparable to that of hardware-based
approaches. However, adopting GPUs leads to a few undesirable constraints.
First, it is difficult to program GPU to extract the peak performance. Since
GPU operates in a single-instruction-multiple-data (SIMD) fashion, the peak
performance is obtained only when all computing elements follow the same in-
struction stream. Satisfying this constraint is very challenging and often limits
the GPU applicability to relatively simple tasks. Second, large number of GPU
cores consume a significant amount of power. Even with recent power optimiza-
tion, GPUs still use a significant portion of the overall system power. Finally,
discrete GPUs incur high latency since packets (and their metadata) need to be
copied to GPU memory across the PCIe interface for analysis. These extra PCIe
transactions often exacerbate the lack of CPU-side memory bandwidth, which
degrades the performance of other NIDS tasks.

Recent development of system-on-chip many-core processors [8,16] has brid-
ged the technology gap between hardware- and software-based systems. The pro-
cessors typically employ tens to hundreds of processing cores, allowing highly-
flexible general-purpose computation at a low power budget without the SIMD
constraint. For example, EZchip TILE-Gx72 [16], the platform that we employ
in this paper, has 72 processing cores where each core runs at 1 GHz but con-
sumes only 1.3 watts even at full speed (95 watts in total). With massively
parallel computation capacity, a TILE platform could significantly upgrade the
performance of NIDS.

In this paper, we explore the high-performance NIDS design space on a TILE
platform. Our guiding design principle is to balance the load across many cores
for high parallelism while taking advantage of the underlying hardware to min-
imize the per-packet overhead. Under this principle, we design and implement
Haetae, our high-performance NIDS on TILE-Gx72, with the following design
choices. First, we run a full NIDS engine independently on each core for high
performance scalability. Unlike the existing approach that adopts the pipelining
architecture [24], our system removes all the inter-core dependency and mini-
mizes CPU cycle wastes on inter-core communication. Second, we leverage the
programmable network interface cards (NICs) to offload per-packet metadata
operations from regular processing cores. We also minimize the size of packet
metadata to eliminate redundant memory access. This results in significant sav-
ings in processing cycles. Finally, Haetae dynamically offloads the network flows
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Fig. 1. Overall architecture of TILE-Gx72 processor

to host-side CPU for analysis when the system experiences a high load. We find
that the host offloading greatly improves the performance by exploiting available
computing cycles of different processor types.

We implement Haetae by extending open-source Suricata [14] optimized for
TILE-Gx72 processors. Our evaluation shows that Haetae achieves 79.3 Gbps for
large synthetic packets, a factor of 1.7 improvement over the MCP-based Suri-
cata. Our system outperforms Kargus [23], the best-known GPU-based NIDS,
by a factor of 2.4 with 2,435 HTTP rules given by Snort 2.9.2.1 [29] that Kar-
gus used. With real traffic traces, the performance of Haetae reaches 48.5 Gbps,
which is 1.9 times higher throughput than that of the state-of-the-art GPU-
based NIDS. In terms of power efficiency, Haetae consumes 5.8 times less power
than the GPU-based NIDS.

While we focus on the development of Haetae on TILE-Gx72 in this paper,
we believe that our design principles can be easily ported to other programmable
NICs and many-core processors as well.

2 Background

In this section, we provide a brief overview of many-core processors using EZchip
TILE-Gx72 as a reference processor. We then describe the operation of a typical
signature-based NIDS.

2.1 Overview of EZchip TILE-Gx

Figure 1 shows the architecture of the EZchip TILE-Gx72 processor with 72
processing cores (called tiles in the TILE architecture). Each tile consists of
a 64-bit, 5-stage very-long-instruction-word (VLIW) pipeline with 64 registers,
32 KB L1 instruction and data caches, and a 256 KB L2 set-associative cache.
TILE-Gx72 does not provide a local L3 cache, but the collection of all L2 caches
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serves as a distributed L3 cache, resulting in a shared L3 cache of 18 MB. Fast
L3 cache access is realized by a high-speed mesh network (called iMesh), which
provides lossless routing of data and ensures cache coherency among different
tiles. The power efficiency comes from relatively low clock speed (1 to 1.2 GHz),
while a large number of tiles provide ample computation cycles.

The TILE-Gx72 processor contains special hardware modules for network
and PCIe interfaces as well. mPIPE is a programmable packet I/O engine that
consists of ten 16-bit general-purpose processors dedicated for packet processing.
mPIPE acts as a programmable NIC by directly interacting with the Ethernet
hardware with a small set of API written in C. mPIPE is capable of performing
packet I/O at line speed (up to 80 Gbps), and its API allows to perform di-
rect memory access (DMA) transactions of packets into the tile memory, inspect
packet contents, and perform load-balancing. The primary goal of the mPIPE
module is to evenly distribute incoming packets to tiles. Its packet processors
help parse packet headers and balance the traffic load across all tiles: a feature
that closely resembles the receive-side scaling (RSS) algorithm available in mod-
ern NICs. The mPIPE processors can be programmed to check the 5-tuples of
each packet header (i.e., source and destination IP addresses, source and des-
tination ports, and protocol ID) and to consistently redirect the packets of the
same TCP connection to the same tile.

Besides the mPIPE module, the TILE-Gx72 processor also has the TRIO
hardware module, which performs bidirectional PCIe transactions with the host
system over an 8-lane PCIev2 interface. The TRIO module maps its memory
region to the host side after which it handles DMA data transfers and buffer
management tasks between the tile and host memory. TRIO is typically used by
the host system to manage applications running in a TILE platform. Since the
TILE platform does not have direct access to block storage devices, some TILE
applications also use TRIO to access host-side storage using FUSE. In this work,
we extend the stock TRIO module to offload flow analyzing tasks to the host
machine for Haetae.

The TILE processors are commonly employed as PCIe-based co-processors.
TILEncore-Gx72 is a PCIe device that has the TILE-Gx72 processor and eight
10 GbE interfaces [5], and we call it TILE platform (or simply TILE-Gx72) in
this paper.

2.2 Overview of the Suricata NIDS

We use a TILE-optimized version of Suricata v1.4.0 [14] provided by EZchip.
We refer to it as baseline Suricata (or simply Suricata) in this paper. Baseline
Suricata uses a stacked multi-threaded model where each thread is affinitized
to a tile, and it runs a mostly independent NIDS engine except for flow table
management and TRIO-based communication. It follows a semi-pipelining ar-
chitecture where a portion of NIDS tasks are split across multiple tiles. The
incoming traffic is distributed to the tiles, and each tile has the ownership of
its share of the traffic. In this work, we extend baseline Suricata to support the
design choices we make for high NIDS performance.
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Fig. 2. Performance bottleneck analysis of Baseline Suricata: (a) Throughputs of the
Aho-Corasick algorithm over varying numbers of TILE-Gx72 cores, (b) CPU usage
breakdown of Suricata modules over various packet size

Incoming packets to Suricata go through the following five NIDS modules.

1. The receive module reads packets through packet I/O engines. In com-
modity desktop and server machines, such packet I/O engines may include
PF RING [11], PSIO [20], and DPDK [7]. Haetae, on the other hand, uses
EZchip’s mPIPE module for network I/O communication. After receiving a
batch of packets from the mPIPE module, the NIDS allocates memory for
each ingress packet and initializes the corresponding packet data structure.

2. The decode module parses packet headers and fills the relevant packet sub-
structures with protocol-specific metadata. As a last step, it registers the
incoming packets with the corresponding flows.

3. The stream module handles IP defragmentation and TCP segment reassem-
bly. It also monitors IP-fragmented and TCP-segmented evasion attacks as
mentioned in [21].

4. The detect module inspects the packet contents against attack signatures
(also known as rules). This phase performs deep packet inspection by scan-
ning each byte in the packet payloads. It first checks if a packet contains
possible attack strings (e.g., multi-string matching) and if so, more rigorous
regular expression matching is performed to confirm an intrusion attempt.
This two-stage pattern matching allows efficient content scanning by avoid-
ing regular expression matching on the innocent traffic.

5. Finally, the output module logs the detection of possible intrusions based
on the information from the matched signatures.

3 Approach to High Performance

In this section, we identify the performance bottlenecks of baseline Suricata on
the TILE platform and describe our basic approach to addressing them.
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3.1 Performance Bottlenecks of Suricata

A typical performance bottleneck of a signature-based NIDS is its pattern match-
ing. However, for TILE-Gx72, we find that parallel execution of pattern matching
may provide enough performance while per-packet overhead related to metadata
processing takes up a large fraction of processing cycles.

To demonstrate this, we measure the performance of a multi-pattern match-
ing (MPM) algorithm (Aho-Corasick algorithm [17], which is the de-facto multi-
string matching scheme adopted by many software-based NIDSes [14,23,29,34]).
Figure 2 (a) shows the performance of the MPM algorithm on the TILE platform
without packet I/O and its related NIDS tasks. For the experiment, we feed in
newly-created 1514B TCP packets with random payloads from the memory to
the pattern matching module with 2,435 HTTP rules from the Snort 2.9.2.1 rule-
set. We observe that the performance scales up linearly as the number of cores
grows, peaking at 86.1 Gbps with 70 cores. The pattern matching performance
is reasonable for TILE-Gx72 that has eight 10G network interfaces.

However, if we generate packets over the network, the overall performance
drops by more than 40 Gbps. This means that modules other than pattern
matching must be optimized for overall performance improvement. To reveal a
detailed use of processing cycles, we measure the fraction of compute cycles spent
on each NIDS module. The results in Figure 2 (b) show that tasks other than
pattern matching (i.e., the detect module) take up 28 to 72% of total processing
cycles, depending on the packet size. The tile usage for the non-pattern matching
portion is a fixed overhead per packet as the fraction gets higher for smaller
packets.

Our detailed code-level analysis reveals that these cycles are mostly used to
process packet metadata. They include the operations, such as decoding the pro-
tocol of each packet, managing concurrent flows, and reassembling TCP streams
for each incoming packet. In this work, we focus on improving the performance of
these operations, since the overall NIDS performance often depends on the per-
formance of these operations while leveraging the unique hardware-level features
of TILE-Gx72.

3.2 Our Approach

Our strategy for a high-performance NIDS is two folds. First, we need to par-
allelize pattern matching as much as possible to give the most compute cycles
to the performance-critical operation. This affects the basic architecture of the
NIDS, which will be discussed in more detail in the next section. Second, we
need to reduce the overhead of the per-packet operation as much as possible.
For the latter, we exploit the special hardware provided by the TILE-Gx72 plat-
form. More specifically, our system leverages mPIPE and TRIO for offloading
some of the heavy operations from regular tiles. mPIPE is originally designed to
evenly distribute the incoming packets to tiles by their flows, but we extend it to
perform per-packet metadata operations to reduce the overhead on regular tiles.
The key challenge here is that the offloaded features need to be carefully chosen
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because the mPIPE processors provide limited compute power and memory ac-
cess privilege. TRIO is mostly used to communicate with the host-side CPU for
monitoring the application behavior. We extend the TRIO module to pass the
analyzing workload to the host side when the TILE platform experiences a high
load. That is, we run a host-side NIDS for extra flow analysis. The challenge
here is to make efficient PCIe transfers to pass the flows and to dynamically
determine when to deliver the flows to the host side. We explain the design in
more detail in the next section.

4 Design

In this section, we provide the base design of Haetae, and describe three opti-
mizations: mPIPE computation offloading, lightweight metadata structure, and
dynamic host-side flow analysis.

4.1 Parallel NIDS Engine Architecture

Haetae adopts the multi-threaded parallel architecture where each thread is run-
ning a separate NIDS engine, similar to [23]. Each NIDS engine is pinned to a
tile, and repeats running all NIDS tasks in sequence from receive to output mod-
ules. This is in contrast to the pipelining architecture used by earlier TILE-based
Suricata [24] where each core is dedicated to perform one or a few modules and
the input packets go through multiple cores for analysis. Pipelining is adopted
by earlier versions of open-source Suricata, but it suffers from a few fundamental
limitations. First, it is difficult to determine the number of cores that should be
assigned for each module. Since the computation need of each module varies for
different traffic patterns, it is hard to balance the load across cores. Even when
one module becomes a bottleneck, processing cores allocated for other modules
cannot help alleviate the load of the busy module. This leads to load imbalance
and inefficient usage of computation cycles. Second, pipelining tends to increase
inter-core communication and lock contention, which is costly in a high-speed
NIDS. Since an NIDS is heavily memory-bound, effective cache usage is critical
for good performance. In pipelining, however, packet metadata and payload have
to be accessed by multiple cores, which would increase CPU cache bouncing and
reduce the cache hits. Also, concurrent access to the shared packet metadata
would require expensive locks, which could waste processing cycles.

To support our design, we modify baseline Suricata to eliminate any shared
data structures, such as the flow table. Each thread maintains its own flow table
while it removes all locks needed to access the shared table entry. Incoming
packets are distributed to one of the tiles by their flows, and a thread on each
tile analyzes the forwarded flows without any intervention by other threads. Since
each thread only needs to maintain a small amount of flow ranges, dividing the
huge flow table into multiple pieces for each thread is not a big trade-off. Thus,
this shared-nothing architecture ensures high scalability while it simplifies the
implementation, debugging, and configuration of an NIDS.
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One potential concern with this design is that each core may not receive the
equal amount of packets or flows from the NICs. However, recent measurements
in a real ISP show that a simple flow-based load balancing scheme like RSS more
or less evenly distributes the flows among the processing cores [35]. According
to the study, the maximum difference in the number of processed flows per each
core on a 16-core server is within 0.2% of all flows at any given time with real
traffic. This implies that the randomness of IP addresses and port numbers used
in real traffic is sufficient to distribute the packet load evenly among the tiles.

4.2 mPIPE Computation Offloading

With the highly-scalable system architecture in place, we now focus on opti-
mizing per-tile NIDS operations. Specifically, we reduce the packet processing
overhead on a tile by offloading some common computations to the mPIPE pro-
grammable hardware module. When a packet arrives at a network interface,
mPIPE allocates a packet descriptor and a buffer for the packet content. The
packet descriptor has packet metadata such as timestamps, size, pointer to the
packet content as well as some reserved space for custom processing. After packet
reception, the software packet classifier in mPIPE distributes the packet descrip-
tors to one of the tile queues, and the tile accesses the packet content with the
packet descriptor. mPIPE allows the developers to replace the packet classifier
with their custom code to change the default module behavior.

Programming in mPIPE, however, is not straightforward due to a number
of hardware restrictions. First, in the case of mPIPE, it allows only 100 com-
pute cycles per packet to execute the custom code at line rate. Second, the
reserved space in the packet descriptor is limited to 28 bytes, which could be too
small to perform intensive computations. Third, mPIPE embedded processors
are designed mainly for packet classification with a limited instruction set and
programming libraries. They consist of 10 low-powered 16-bit processors, which
do not allow flexible operations such as subroutines, non-scalar data types (e.g.,
structs and pointers), and division (remainder) operations.
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Given these constraints, Haetae offloads two common packet processing tasks
of an NIDS: packet protocol decoding and hash computation for flow table
lookup. We choose these two functions for mPIPE offloading since they should
run for every packet but do not maintain any state. Also, they are relatively sim-
ple to implement in mPIPE while they save a large number of compute cycles
on each tile.

Figure 3 shows how the customized mPIPE module executes protocol decod-
ing and flow hash computation. A newly-arriving packet goes through packet de-
coding and flow hash functions, saving results to the reserved area of an mPIPE
packet descriptor. Out of 28 bytes of total output space, 12 bytes are used for
holding the packet address information (e.g., source and destination addresses
and port numbers) and 4 bytes are used to save a 32-bit flow hash result. The
remaining 12 bytes are employed as a bit array to encode various information:
whether it is an IPv4 or IPv6 packet, whether it is a TCP or UDP packet, the
length of a TCP header in the case of the TCP packet, etc. Each bit can indicate
multiple meanings depending on protocols. After these functions, a load balancer
determines which tile should handle the packet, and the packet descriptor along
with the packet is directly passed onto the L2 cache of the tile that handles the
packet, a feature similar to Intel data direct I/O [6]. As a result, each NIDS
thread can proceed with the pre-processed packets and avoids memory access
latencies.

Our micro-benchmarks show that mPIPE offloading improves the perfor-
mance of the decode and flow management modules by 15 to 128% (in section 6).
Since these are per-packet operations, the cycle savings are more significant with
smaller packets.

4.3 Lightweight Metadata Structure

mPIPE computation offloading confirms that reducing the overhead of per-
packet operation greatly improves the performance of the overall NIDS. The
root cause for performance improvement is reduced memory access and enhanced
cache access efficiency. More efficient cache utilization leads to a smaller number
of memory accesses, which minimizes the wasted cycles due to memory stalls. If
the reduced memory access is a part of per-packet operation, the overall savings
could be significant since a high-speed NIDS has to handle a large number of
packets in a unit time.

To further reduce the overhead of per-packet memory operation, we simplify
the packet metadata structure of baseline Suricata. Suricata’s packet metadata
structure is bloated since it has added support for many network and transport-
layer protocols over time. For example, the current data structure includes packet
I/O information (e.g., PCAP [10], PF RING [11], mPIPE), network-layer meta-
data (e.g., IPv4, IPv6, ICMP, IGMP) and transport-layer metadata (e.g., TCP,
UDP, SCTP). The resulting packet metadata structure is huge (1,920 bytes),
which is not only overkill for small packets but also severely degrades the cache
utilization due to redundant memory access. Also, the initialization cost for
metadata structure (e.g., memset() function calls) would be expensive.
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To address these concerns, we modify the packet metadata structure. First,
we remove the data fields for unused packet I/O engines. Second, we separate the
data fields for protocols into two groups: those that belong to frequently-used
protocols such as TCP, UDP, and ICMP and the rest that belong to rarely-used
protocols such as SCTP, PPP, and GRE. We move the data fields for the latter
into a separate data structure, and adds a pointer to it to the original structure.
If an arriving packet belongs to one of rarely-used protocols, we dynamically
allocate a structure and populate the data fields for the protocol. With these
optimizations, the packet metadata structure is reduced to 384 bytes, five times
smaller than the original size. Our profiling results find that the overall number
of cache misses is reduced by 54% due to lightweight metadata structures.

4.4 Flow Offloading to Host-side CPU

Since TILE-Gx72 is typically attached to a commodity server machine, we could
improve the NIDS performance further if we harness the host-side CPU for
intrusion detection. The TILE-Gx72 platform provides a TRIO module that
allows communication with the host machine. We exploit this hardware feature
to offload extra flows beyond the capacity of the TILE processors to the host-side
CPU.

The net performance increase by host-side flow offloading largely depends on
two factors: (i) how fast the TILE platform transfers the packets to the host
machine over its PCIe interface, and (ii) the pattern matching performance of
the host-side NIDS. In our case, we use a machine containing two Intel E5-2690
CPUs (2.90 GHz, 16 cores in total) that run Kargus with only CPUs [23]. Since
the performance of the Aho-Corasick algorithm in Kargus is about 2 Gbps per
CPU core [23], the host-side NIDS performance would not be an issue given the
8-lane PCIev2 interface (with 32 Gbps maximum bandwidth in theory) employed
by the TILE platform.

We first describe how we optimize the TRIO module to efficiently transfer
packets to the host side, and explain which packets should be selected for of-
floading. Also, we determine when the packets should be offloaded to the host
machine to maximize the performance of both sides.

Efficient PCIe Communication Baseline Suricata provides only rudimentary
host offloading support mainly used for remote message logging; since the TILE
platform does not have built-in secondary storage, it periodically dispatches the
batched log messages from its output module to the host-side storage via its
TRIO module. Since log transmission does not require a high bandwidth, the
stock TRIO module in the baseline Suricata code is not optimized for high-
speed data transfer. First, the module does not exploit zero-copy DMA support.
Second, it does not exercise parallel I/O in PCIe transactions, incurring a heavy
contention in the shared ring buffer. Our measurement shows that the stock
TRIO module achieves only 5.7 Gbps of PCIe data transfer throughput at best
out of the theoretical maximum of 32 Gbps.
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We exploit three features in the TRIO module to maximize the PCIe trans-
fer performance for high host-side NIDS throughput. First, we develop a zero-
copying offloading module with the raw-DMA API provided by the TRIO engine.
The raw-DMA API ensures low-latency data transfer between the TILE plat-
form and the host. It requires physically-contiguous buffers to map the TILE
memory to the host-side address space. For zero-copy data transfer, we pre-
allocate shared packet buffers at initialization of Suricata, which are later used
by mPIPE for packet reception. Packets that need to be offloaded are then trans-
ferred via the TRIO module without additional memory copying, which greatly
saves compute cycles. Second, we reduce the contention to the shared ring buffer
by increasing the number of TRIO queues. The baseline version uses a single
ring buffer, which produces severe contention among the tiles. We increase the
number to 16, which is the maximum supported by our TILE platform. This
allows parallel queue access both from tiles and CPU cores. Finally, we offload
multiple packets in a batch to amortize the cost incurred due to per-packet PCIe
transfer. Our packet offloading scheme is shown in Figure 4. We find that these
optimizations are very effective, improving the performance of PCIe transfer by
5 to 28 times over the stock version.

Dynamic Flow Offloading We design the TRIO offloading module to fully
benefit from the hardware advantage of the TILE platform. We make the TILE
platform handle as much traffic as possible to minimize the power consumption
and the analyzing latency. To determine when to offload the packets to the host
side, each tile monitors whether it is being under pressure by checking the queue
size in mPIPE. A large build-up in the queue indicates that the incoming load
may be too large for the tile to catch up. Figure 5 shows the design of the dynamic
offloading algorithm in Haetae. The basic idea is similar to opportunistic packet
offloading to GPU in [23], but the unit of offloading is a flow in our case, and the
task for offloading is the entire flow analysis instead of only pattern matching.
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In our algorithm, we use two thresholds to determine whether a new flow should
be offloaded or not. If the queue length (q) exceeds the first threshold (T1), a
small portion (L1) of new flows are chosen to be offloaded to the host machine.
If it successfully curbs the queue size blowup, Haetae reverts to TILE-only flow
analysis and stops offloading to the host side. However, if the queue size increases
beyond the second threshold (T2), a larger portion (L2, typically, L2 = 1) of
new flows is offloaded to the host machine, which helps drain the queue more
quickly. When the queue length exceeds the second threshold, the system keeps
the offloading rate to L2 until the queue length goes below the first threshold
(T1). This two-level offloading scheme prevents rapid fluctuation of the queue
length, which would stabilize flow processing in either mode.

The unit of offloading should be a flow since the host-side NIDS is indepen-
dent of the TILE-side NIDS. The host-side NIDS should receive all packets in a
flow to analyze the protocol as well as reassembled payload in the same flow. To
support flow-level offloading, we add a bit flag to each flow table entry to mark
if a new packet belongs to a flow being offloaded or not. This extra bookkeeping,
however, slightly reduces the per-tile analyzing performance since it is rather
heavy per-packet operation.

5 Implementation

We implement Haetae by extending a TILE-optimized Suricata version from
EZchip. This version optimizes the Aho-Corasick algorithm with special TILE
memory instructions, and uses a default mPIPE packet classifier to distribute
incoming packets to tiles. To support the design features in section 4, we imple-
ment per-tile NIDS engine, mPIPE computation offloading, lightweight packet
metadata structure, and dynamic host-side flow offloading. This requires a total
of 3,920 lines of code modification of the baseline Suricata code.
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For shared-nothing, parallel NIDS engine, we implement a lock-free flow table
per each tile. By assigning a dedicated flow table to each NIDS engine, we
eliminate access locks per flow entry and improve the core scalability. The flow
table is implemented as a hash table with separate chaining, and the table entries
are pre-allocated at initialization. While the baseline version removes idle flow
entries periodically, we adopt lazy deletion of such entries to reduce the overhead
of per-flow timeouts. Idle flow entries are rare, so it suffices to delete them
in chain traversal for other activities only when there is memory pressure. To
maximize the parallelism, we run an NIDS engine on 71 tiles out of 72 tiles. The
remaining tile handles shell commands from the host machine.

Supporting lightweight packet metadata structure is the most invasive update
since the structure is used by all modules. To minimize code modification and to
hide the implementation detail, we provide access functions for each metadata
field. This requires only 360 lines of code modification, but it touches 32 source
code files.

Implementing mPIPE computation offloading is mostly straightforward ex-
cept for flow hash calculation. Baseline Suricata uses Jenkin’s hash function [1]
that produces a 32-bit result, but implementing it with a 16-bit mPIPE proces-
sor requires us to emulate 32-bit integer operations with 16-bit and 8-bit native
instructions. Also, we needed to test whether protocol decoding and hash calcu-
lation is within the 100-cycle budget so as not to degrade the packet reception
performance. mPIPE offloading modifies both the existing mPIPE module and
Suricata’s decode and flow management modules, which requires 130 and 100
lines of new code, respectively.

For dynamic host-side flow offloading, we implement 1,700 lines of code on
the tile side and 1,040 lines of code on the host side. First, we modify the receive
module to measure the load of each tile and to keep track of the flows that
are being offloaded to the host. Second, we implement the tile-to-host packet
transfer interface with a raw DMA API provided by TRIO. Finally, we modify
the CPU-only version of Kargus to accept and handle the traffic passed by the
TILE platform.

6 Evaluation

Our evaluation answers three aspects of Haetae:
1. We quantify the performance improvement and overhead of mPIPE and

host-side CPU offloading. Our evaluation shows that the mPIPE offloading
improves the performance of the decode and flow management modules by up
to 128% and the host-side CPU offloading improves the overall performance
by up to 34%.

2. Using synthetic HTTP workloads, we show the breakdown of performance
improvement for each of our three techniques and compare its overall perfor-
mance with Kargus with GPU and baseline Suricata on the TILE platform.
The result shows that Haetae achieves up to 2.4x improvements, over Kargus
and baseline Suricata.
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Fig. 6. Throughputs of the decoding and flow management modules with mPIPE of-
floading. The throughputs are line rate (80 Gbps) for 1024 and 1514B packets.

3. Finally, we evaluate the NIDS performance using real traffic traces obtained
from the core network of one of the nation-wide cellular ISPs in South Ko-
rea. Haetae achieves a throughput of 48.5 Gbps, which is a 92% and 327%
improvement respectively over Kargus and baseline Suricata.

6.1 Experimental setup

We install a TILE-Gx72 board on a machine with dual Intel E5-2690 CPUs
(octacore, 2.90 GHz, 20 MB L3 cache) with 32 GB of RAM. We run Haetae
on the TILE platform and CPU-based Kargus on the host side. Each NIDS is
configured with 2,435 HTTP rules from the Snort 2.9.2.1 ruleset. For packet
generator, we employ two machines that individually have dual Intel X5680
CPUs (hexacore, 3.33 GHz, 12 MB L3 cache) and dual-port 10 Gbps Intel NICs
with the 82599 chipset. Our packet generator is based on PSIO [20] that can
transmit packets at line rate (40 Gbps each) regardless of packet size. For real
traffic evaluation, we replay 65GB of packet traces obtained from one of the
largest cellular ISPs in South Korea [35]. We take the Ethernet overhead (such
as preamble (8B), interframe gap (12B), and checksum (4B)) into consideration
when we calculate a throughput.

6.2 Computation Offloading Overhead

This section quantifies the performance benefit and overhead of mPIPE and
TRIO offloading.

mPIPE offloading overhead We first verify whether offloaded computations
adversely affect mPIPE’s packet I/O throughput. For this, we disable all NIDS
modules other than the receive module, and compare the packet acquisition
throughputs with and without mPIPE computation offloading. We generate TCP
packets of varying size from 64 to 1514 bytes and measure the throughput for
each packet size. Our result shows that even with mPIPE computation offloading
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Fig. 7. TRIO performance benchmarks: (a) TRIO throughputs with and without our
optimizations, (b) Throughputs with flow offloading

packet I/O achieves line rates (80Gbps) regardless of packet size. This confirms
that the offloaded computations are within the cycle budget of the mPIPE pro-
cessors, and offloading does not adversely affect the packet I/O performance.

We then evaluate the performance improvement achieved by mPIPE offload-
ing. Figure 6 compares the performances with and without offloading. To focus
on the performance improvement by packet reception and flow management,
we enable the receive, decode, and flow management modules and disable other
modules (e.g., stream and detect modules) for the experiments.

The mPIPE offloading shows 15 to 128% improvement over baseline Suricata
depending on the packet size. Because mPIPE offloading alleviates per-packet
overhead, improvement with small packets is more noticeable than with large
packets. In sum, the results show that computation offloading to mPIPE brings
significant performance benefits in the NIDS subtasks.

TRIO offloading overhead We now measure TRIO’s throughput in sending
and receiving packets over the PCIe interface. Note this corresponds to the max-
imum performance improvement gain achievable using host-side flow offloading.
We compare the throughputs of our optimized TRIO module and the existing
one. Figure 7 (a) shows the throughputs by varying packet sizes. The original
TRIO module cannot achieve more than 5.7 Gbps of throughput because it first
copies data into its buffer to send data across the PCIe bus. Such additional
memory operations (i.e., memcpy()) significantly decrease the throughputs. Our
optimized TRIO is up to 28 times faster. The relative improvement increases as
the packet size increases because the overhead of DMA operation is amortized.
The throughput saturates at 29 Gbps over for packets larger than 512B, which is
comparable to the theoretical peak throughput of 32 Gbps for an 8-lane PCIe-v2
interface. Note that the raw channel rate of a PCIe-v2 lane is 5 Gbps, and the
use of the 8B/10B encoding scheme limits the peak effective bandwidth to 4
Gbps per lane. Figure 7 (b) shows end-to-end throughputs of Haetae with the
CPU-side flow offloading by varying packet size. By exploiting both the TILE
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Fig. 8. Breakdown of performance improvement by each technique

processors and host-side CPUs, we improve the overall NIDS performance by 18
Gbps, from 61 to 79.3 Gbps, for 1514B packets. While the overall performance is
improved, we notice that the TILE-side performance degrades by 9 Gbps (to 52
Gbps in Figure 7 (b)) when TRIO offloading is used. This is because extra pro-
cessing cycles are spent on PCIe transactions for packet transfers. We also note
that the improvement with larger packets is more significant. This is because the
PCIe overhead is relatively high for small-sized packets and the CPU-side IDS
throughput with small packets is much lower compared to its peak throughput
obtained for large packets. Despite the fact, the flow offloading improves the
performance by 79% for 64B packets. Given that the average packet size in real
traffic is much larger than 100B [35], we believe that the actual performance
improvement would be more significant in practice.

6.3 Overall NIDS Performance

Figure 8 shows the performance breakdown of the three key techniques under
synthetic HTTP traffic. The overall performance ranges from 16 to 79 Gbps de-
pending on the packet size. mPIPE offloading and metadata reduction achieve
33% (1514B packets) to 88% (64B packets) improvements and CPU-side flow of-
floading achieves 32% additional improvement on average. Through the results,
we find that reducing the per-packet operations significantly improves the over-
all NIDS performance, and we gain noticeable performance benefits by utilizing
the host resources. Figure 9 (a) shows the performances of Haetae compared
to other systems under the synthetic HTTP traffic. We compare with the base-
line Suricata, customized for Tilera TILE-Gx processors, and Kargus with two
NVIDIA GTX580 GPUs. In comparison with baseline Suricata, Haetae shows
1.7x to 2.4x performance improvement. We also see 1.8x to 2.4x improvement
over Kargus in throughput (except for 64B packets). The relatively high per-
formance of Kargus for 64B packets mainly comes from its batched packet I/O
and batched function calls, which significantly reduces the overhead for small
packets. In case of Haetae, we find that batch processing in mPIPE is ineffective
in packet reception due to different hardware structure.
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Fig. 9. Performance comparison with (a) synthetic HTTP workloads, (b) the NIDS
proposed in ANCS ‘13 [24] (36 tiles)

Here, we compare Haetae with a pipelined NIDS design in [24]. Because the
source code is not available, we resort to indirect comparison by taking the per-
formance number measured using a TILE-Gx36 processor from [24]. Since the
clock speeds of the TILE-Gx36 (1.2 GHz) and TILE-Gx72 (1.0 GHz) processors
are different, we scale down the performance numbers in the paper. For fair com-
parison, we use only 36 tiles for Haetae but increase the number of rules (7,867
rules), similar to [24]. Figure 9 (b) shows the final results. While previous work
achieves 6 to 11.3 Gbps for 100 to 512B packets, Haetae without host offloading
achieves 7.4 to 20.6 Gbps for the same size, which is 1.2 to 1.8x more efficient.
Moreover, Haetae with host offloading achieves 1.7 to 3.2x improvements over
the previous work. The improvements come from two main reasons. First, unlike
pipelining, Haetae’s parallel architecture reduces load imbalance and inefficient
usage of the tiles. We observe that the performance of [24] flattens at 512B
packets, presumably due to the overheads of pipelining. Second, Haetae saves
the computation cycles by applying the mPIPE offloading and the lightweight
metadata structures.

In terms of power consumption, Haetae is much more efficient: Haetae with
host offloading (TILE-Gx72 and two Intel E5-2690 CPUs) shows 0.23 Gbps per
watt while Kargus (two Intel X5680 CPUs and two NVIDIA GTX580 GPUs)
achieves only 0.04 Gbps per watt, spending 5.8x more power than Haetae.

6.4 Real Traffic Performance

We evaluate the performance with real traffic traces obtained from a 10 Gbps
LTE backbone link at one of the largest mobile ISPs in South Korea. We remove
unterminated flows from the real traffic traces and shape them to increase the
overall transmission rate (up to 53 Gbps). The real traffic trace files are first
loaded into RAM before packets are replayed. The files take up 65 GB of physical
memory (2M TCP flows, 89M packets). To increase the replay time, we replay
the files 10 times repeatedly. Like the previous measurements, we use the same
ruleset (2,435 HTTP rules) as well.
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IDS Baseline Suricata Kargus Haetae

Throughput 11.6 Gbps 25.2 Gbps 48.5 Gbps

Table 1. Performance comparison with the real traffic

Table 1 shows the throughputs of Haetae and other NIDSes. With the real
traces, Haetae is able to analyze 4.2x and 1.9x more packets than Baseline Suri-
cata and Karugs respectively. While Haetae achieves up to 79.3 Gbps with the
synthetic workload, the throughput with the real workload decreases due to two
major reasons. First, the modules related to flows are fully activated. Unlike the
synthetic workload, the real workload has actual flows. The flow management
module needs to keep updating flow states and the stream module also needs to
reassemble flow streams. Thus, these modules consume much more cycles with
the real workload than with the synthetic workload. Second, while the synthetic
workload consists of packets of the same size, the real traffic has various data
and control packets of different sizes. The average packet size of the real traffic
traces is 780 bytes, and the throughput is 16% lower than that of 512B packets
in the synthetic workload.

7 Related Work

We briefly discuss related works. We categorize the previous NIDS works into
three groups by their hardware platforms: dedicated-hardware, general-purpose
multi-core CPU, and many-core processors.
NIDS on dedicated-hardware: Many works have attempted to scale the
performance of pattern matching with dedicated computing hardware, such as
FPGA, ASIC, TCAM, and network processors. Barker et al. implement the
Knuth-Morris-Pratt string matching algorithm on an FPGA [18]. Mitra et al.
develops a compiler that converts Perl-compatible regular expression (PCRE)
rules into VHDL code to accelerate the Snort NIDS [27]. Their VHDL code run-
ning on an FPGA achieves 12.9 Gbps of PCRE matching performance. Tan et
al. implement the Aho-Corasick algorithm on an ASIC [32]. Yu et al. employ
TCAMs for string matching [36] while Meiners et al. optimize regular expression
matching with TCAMs [26]. While these approaches ensure high performance,
a long development cycle and a lack of flexibility limit its applicability.
NIDS on multi-core CPU: Snort [29] is one of the most popular software
NIDSes that run on commodity servers. It is initially single-threaded, but more
recent versions like SnortSP [12] and Para-Snort [19] support multi-threading to
exploit the parallelism of multi-core CPU. Suricata [14] has the similar architec-
ture as Snort and it allows multiple worker threads to perform parallel pattern
matching on multi-core CPU.

Most of multi-threaded NIDSes adopt pipelining as their parallel execution
model: they separate the packet receiving and pattern matching modules to
a different set of threads affinitized to run on different CPU cores so that the
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incoming packets have to traverse these threads for analysis. As discussed earlier,
however, pipelining often suffers from load imbalance among the cores as well as
inefficient CPU cache usage.

One reason for the prevalence of pipelining in early versions of multi-threaded
software NIDSes is that popular packet capture libraries like pcap [10] and net-
work cards at that time did not support multiple RX queues. For high perfor-
mance packet acquisition, a CPU core had to be dedicated to packet capture
while other CPU cores were employed for parallel pattern matching. However,
recent development of multi-queue NICs and multi-core packet I/O libraries such
as PF RING [11], PSIO [20], netmap [28] allows even distribution of incoming
packets to multiple CPU cores, which makes it much easier to run an indepen-
dent NIDS engine on each core. Haetae takes the latter approach, benefiting
from the mPIPE packet distribution module while it avoids the inefficiencies
from pipelining.
NIDS on many-core processors: Many-core GPUs have recently been em-
ployed for parallel pattern matching. Gnort [33] is the seminal work that accel-
erates multi-string and regular expression pattern matching using GPUs. Smith
et al. confirm the benefit of the SIMD architecture for pattern matching, and
compare the performance of deterministic finite automata (DFA) and extended
finite automata (XFA) [30] on G80 [31]. Huang et al. develop the Wu-Manber
algorithm for GPU, which outperforms the CPU version by two times [22]. More
recently, Snort-based NIDSes like MIDeA [34] and Kargus [23] demonstrate that
the performance of software engines can be significantly improved by hybrid
usage of multi-core CPU and many-core GPU. For example, Kargus accepts in-
coming packets at 40 Gbps with PSIO [20], a high-performance packet capture
library that exploits multiple CPU cores. It also offloads the Aho-Corasick and
PCRE pattern matching to two NVIDIA GPUs while it performs function call
batching and NUMA-aware packet processing. With these optimizations, Kargus
achieves an NIDS throughput over 30 Gbps on a single commodity server.

Jiang et al. have proposed a Suricata-based NIDS on a TILE-Gx36 plat-
form with 36 tiles [24]. While their hardware platform is very similar to ours,
their NIDS architecture is completely different from Haetae. Their system adopts
pipelining from Suricata and mostly focuses on optimal partitioning of tiles for
tasks. In contrast, Haetae adopts per-tile NIDS engine and focuses on reduc-
ing per-packet operations and offloading flows to host machine. We find that
our design choices provide performance benefits over their system: 20 to 80%
performance improvement in a similar setting.

8 Conclusion

In this paper, we have presented Haetae, a highly scalable network intrusion
detection system on the Tilera TILE-Gx72 many-core processor. To exploit high
core scalability, Haetae adopts the shared-nothing, parallel execution architec-
ture which simplifies overall NIDS task processing. Also, Haetae offloads heavy
per-packet computations to programmable network cards and reduces the packet
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metadata access overhead by carefully re-designing the structure. Finally, Haetae
benefits from dynamic CPU-side flow offloading to exploit all processing power
in a given system. We find that our design choices provide a significant per-
formance improvement over existing state-of-the-art NIDSes with great power
efficiency. We believe that many-core processors serve as a promising platform
for high-performance NIDS and our design principles can be easily adopted to
other programmable NICs and many-core processors as well.
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