
Suppressing Malicious Bot Traffic using an Accurate Human Attester
(No Demo)

Muhammad Jamshed (Student), Younghwan Go (Student), and KyoungSoo Park

Department of Electrical Engineering, KAIST
{ajamshed, yhwan}@ndsl.kaist.edu, kyoungsoo@ee.kaist.ac.kr

Malicious bots are widespread and growing in num-
ber, posing a serious threat to today’s Internet. In March
2011, South Korea saw a massive launch of distributed
denial-of-service attacks to major government and portal
sites from bots. Bots are not only used for spamming and
click frauds, but are also employed in online games to
beat other users and to seek unfair gain.

Human attestation is an emerging technology that
could potentially eliminate these bot attacks. With an un-
forgeable human proof, human-attested messages can be
safely accepted by the server as bot-free. Unfortunately,
existing mechanisms do not accurately bind human activ-
ity to the messages, allowing bots to steal the attestation
for random contents. [1]

We develop an accurate human message attestation
framework for network applications by placing the root
of trust on the input devices and a TPM. Our framework
binds each key event to the message itself so that smart
bots cannot abuse the key event for generating false at-
testation. For this, we slightly modify the input devices
such that they generate a proof (an HMAC-SHA1 hash)
for each input event, which is later self-verified.

Our framework provides a guarantee that no attack-
ers can produce valid human attestation signatures unless
they run the valid attester code and use physical input de-
vices. It generates the signature that is tightly bound to
the message itself. Only when the message is confirmed
to be produced from relevant keystrokes or mouse clicks,
our framework enables a human attestation signature for
the message. Our human attester runs in a sandboxed en-
vironment through Flicker [2] using late launch technol-
ogy. This allows the attester to reliably verify the integrity
of the message and attest to human content without inter-
ference from malicious software.

The overall attestation procedure is described as fol-
lows. A client application records all relevant keycode
comprised of input events and their proofs, for a human
message. When it needs a human attestation for the mes-
sage, it starts a late launch environment and executes the

TASK Latency (ms) 

Late launch init 130 

TPM operations 395 

Late launch exit 80 

Total 605 

Figure 1: Human at-
testation proof genera-
tion latency

2.94 

29.76 

282.17 

2,612.91 

0.01

0.1

1

10

100

1000

10000

100 10K 100K 1M

Ti
m

e 
(m

se
cs

) 

Number of Keycode Validated 

Figure 2: Keycode verfication
time for various sizes in at-
tester

attester in a Flicker session. The attester asks the input
device to verify the proofs and when they are confirmed
to be valid, an embedded TPM signs on the message with
its related attributes, and the attester code hash. Finally,
the application sends the message with the signature to a
remote server over the network, and the server verifies the
signature and enforces its own message accepting policy.

We implement our framework on a standard PC with
the late launch capability and a system TPM. Our proto-
type runs on a regular Linux operating system with key-
board/mouse drivers to emulate the input event proof gen-
eration and verification. Our result shows 605 millisec-
onds latency (Figure 1) for human attestation proof gen-
eration in typical Web browsing, which is in the range
of interactive use. Figure 2 shows that for an email with
10,000 characters, the keycode verification takes less than
30 milliseconds.

References

[1] R. Gummadi, H. Balakrishnan, P. Maniatis, and
S. Ratnasamy. Not-a-Bot (NAB): Improving service
availability in the face of botnet attacks. In Proceed-
ings of USENIX NSDI, 2009.

[2] J. McCune, B. Parno, A. Perrig, M. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for
TCB minimization. In Proceedings of EuroSys, 2008.

1


