
In-Network Server-Directed Client Authentication

and Packet Classification

Muhammad Jamshed
Electrical Engineering Department

KAIST, Korea

ajamshed@ndsl.kaist.edu

Jose Brustoloni
Computer Science Department

University of Pittsburgh, USA

jcb@cs.pitt.edu

Abstract—Defenses against Distributed Denial-of-Service
(DDoS) attacks are commercially available and deployed by
Internet Service Providers (ISPs) at the network and transport
layers. However, attackers increasingly target vulnerabilities at
the application layer. Launched from bots, these attacks seek
to exhaust server resources, such as CPU and disk bandwidth.
Because these attacks use normal-looking requests, ISP defenses
can’t distinguish them. We describe Forward Sentinel (FS), a
novel device that enables ISPs to protect servers against such
attacks. When load on a server reaches a level suggestive of
attack, FS intercepts traffic and requires the server’s clients to
authenticate. Moreover, protected servers can signal to FS the
desired class of service for a client’s packets (e.g., after client
authentication by the server). FS can be configured to mark
packets for different classes of service or drop them according
to the results of client authentication, number of packets
forwarded, and server signaling. Experiments demonstrate that
FS can effectively protect servers against DDoS attacks at the
network, transport, and application layers.

I. INTRODUCTION

The Internet does not authenticate clients’ identities, or even IP

addresses. Client authentication, if any, should be performed

by servers. Moreover, the Quality-of-Service (QoS) that a

client’s packets receive, if not best-effort, is usually assumed

to be a function of the client’s Service Level Agreement (SLA)

with its Internet Service Provider (ISP). Servers typically do

not affect the QoS received by packets targeting them.

These design decisions make Internet servers vulnerable to

Denial-of-Service (DoS) attacks. By the time a server has the

opportunity to authenticate a client and drop or lower the QoS

for processing the client’s requests, the client will have already

wasted network and server resources. If a server has enough

malicious clients, it may have no resources left for legitimate

clients’ requests.

DoS attacks that exploit vulnerabilities at the network

or transport layers, such as smurf and TCP SYN attacks,

typically cause visible network anomalies. Effective defenses

(e.g., [1]) have been developed against them and are now of-

fered commercially by many Internet Service Providers (ISPs).

Consequently, DoS attacks are becoming increasingly stealthy,

using normal application-layer requests to waste server CPU or

disk bandwidth. Launched from bots, i.e., compromised hosts

under the control of an attacker, these attacks often mimic

flash crowds[3]. ISPs are not able to distinguish them from

other traffic.

This paper proposes and evaluates Forward Sentinel (FS),

a novel device that enables ISPs to protect web servers from

DDoS attacks at the network, transport, and application layers.

FS can downgrade packets destined to a server according to

client authentication by FS and signaling from the server. For

example, FS can require a server’s clients to solve CAPTCHAs

when the server’s response time reaches levels suggestive of

DDoS attack. CAPTCHAs are perceptual tasks designed to

be easy for humans and difficult for computers, including

bots[4]. FS can be configured such that, after a client passes

FS authentication, FS forwards only a limited number of bytes

from the client before receiving a signal from the server.

The server may use these bytes to authenticate the client

using a second method that further limits bot-based attacks.

For example, the server may use two-factor authentication

with hardware tokens. Hardware tokens are difficult for bots

to obtain and read. FS forwards at lower quality of service

(QoS) or drops packets from clients that fail FS or server

authentication. Because FS downgrades those packets before

they waste network and server resources, FS can greatly

improve server resilience against DDoS attacks.

II. DESIGN

FS is installed between a web server or server farm and its

clients. FS does not require modifications in client software

and may be configured as a bridge, such that no network

reconfiguration is needed. FS can provide security benefits

without server software modifications, but coordinated FS con-

figuration and server modifications enable greater resilience.

FS protects from malicious exhaustion not only server re-

sources but also network resources between itself and the

protected servers. For example, if FS is installed at the ISP’s

side of a server’s access link, botnets cannot induce DDoS by

congesting that link, which often is a bottleneck.

FS uses SYN cookies[5] to thwart SYN attacks and attacks

using spoofed client IP addresses. To mitigate other DDoS

attacks, FS is designed so that it does not hold per-client state

before having authenticated a client.

FS also monitors the response time of the servers it protects.

If a server’s response time consistently exceeds a configured

threshold, FS considers the server to be under attack. When a

server is under attack, FS forwards to it only client requests

with a valid FS cookie. An FS cookie is a cryptographic

function of its creation time, a nonce, and a secret known



only to FS. FS also keeps track of each valid FS cookie’s

client IP address, expiration time, and maximum number

of simultaneous requests. Therefore, FS cookies cannot be

guessed or replayed by other clients or outside its validity

period.

When a server is under attack, FS replies with an FS

authentication challenge to client requests without a valid FS

cookie. The challenge is designed to be infeasible for bots

to solve – e.g., a CAPTCHA[4]. When a client provides a

valid response to such a challenge, FS redirects the client to

the originally requested URL and provides an FS cookie to

the client. The client retries its request, this time with a valid

FS cookie. FS then opens a connection to the server, splices

together the client and server FS connections, and forwards

the request to the server and the response to the client.

If a client at a certain IP address repeatedly fails to solve

FS authentication challenges, FS blacklists the client’s IP

address. FS drops packets from blacklisted addresses without

processing their contents. Because blacklisted addresses might

eventually be reused by legitimate clients, FS also estimates

periodically how much load the blacklist is shedding from

servers under attack. When the sum of each server’s current

and shed loads is less than the threshold for considering the

server to be under attack, FS clears the blacklist.

To identify cookies when clients use HTTP/1.1 persistent

connections or pipelining, FS performs packet scrubbing[6]

and deep packet inspection. Usually, only the first segment

of a request will contain a cookie. To thwart attacks using

acknowledgments or other segments without an FS cookie,

FS performs stateful filtering (i.e., FS drops segments whose

sequence or acknowledgment number is inconsistent with

connection state)[7].

By adding a CoS cookie to an FS cookie in a response, a

server can signal to FS what class of service (CoS) the server

desires for connections using that FS cookie. The values of

an FS cookie and a CoS cookie can be distinguished by being

placed between the symbols “fs=” or “cos=”, respectively, and

“&” or new line. A CoS cookie may, e.g., specify that the

desired class of service is High, Low, Expire, or Blacklist. FS

forwards to a server a request using an FS cookie of High

or Low CoS only if the request also contains the respective

CoS cookie. If the CoS is Expire, FS immediately expires the

current FS cookie and the client would need to reauthenticate

before it can reuse the web service. If the CoS is Blacklist,

FS blacklists the client’s IP address: all packets from the IP

address are dropped until FS is instructed otherwise by the

server.

On a connection with valid FS cookie but no CoS cookie, FS

may be configured to forward to a server only a limited number

of bytes (called preamble), at a configurable default CoS (e.g.,

High). A server may use the preamble to further authenticate

the client. For example, FS may initially authenticate the

client using a SYN cookie and then a CAPTCHA, and then

the server may further authenticate the client using password

and hardware token. If the client does not pass the server’s

authentication, the server may decide, for example, (1) to serve

Queuing

Discipline

Classifier(qdisc)

PREROUTING

(PREFORWARDING)

FORWARDING

POSTROUTING

(POSTFORWARDING)
FS

DEVICE DRIVER LAYER

(HARDWARE INTERRUPT CONTEXT)

BRIDGING LAYER

(SOFTWARE INTERRUPT CONTEXT)
DEVICE DRIVER LAYER

(HARDWARE INTERRUPT CONTEXT)

NETFILTER FORWARDING CHAIN

INGRESS TRAFFIC EGRESS TRAFFIC

Fig. 1. Netfilter API Showing FS

the client at a Low CoS, (2) to expire the client’s FS cookie,

so that the client has to retry FS and server authentication,

or (3) to blacklist the client, so that the client cannot retry

authentication. These layered defenses can make it impractical

for bots to exhaust resources used by authenticated High CoS

clients.

To signal CoS to intermediate nodes (e.g., routers), FS and

servers also mark the DSCP (differentiated services codepoint)

field in IP headers[8]. In the case of server farms, some servers

may be dedicated to High or Low CoS requests. If so, FS

may be configured to forward requests directly to servers of

the respective CoS. This solution is particularly attractive if the

servers’ operating system is not CoS-aware (e.g., lack resource

containers[9] or signalled receiver processing[10]).

III. IMPLEMENTATION

We developed an FS prototype in Linux as an ebtables-

compliant module. Linux provides a netfilter library for insert-

ing customized forwarding modules in its network or link lay-

ers. Such modules are respectively called iptables- or ebtables-

compliant. Implementing FS at the link layer, as we did, can

be advantageous for two reasons. First, forwarding decisions

are made earlier and with less overhead than would be the

case at the network layer. Second, the resulting device can be

installed in existing networks without network reconfiguration.

Our FS module is hooked as a jump target in the FOR-

WARD chain of ebtables. Fig. 2 illustrates its components and

how the client frames pass through several submodules before

FS decides whether to drop or forward them to the protected

web servers.

PREROUTING

FORWARD SENTINEL

(i) if (i i) & (ii i) are both false

(ii) if BBT cookie 

found

(iii) if EC exists

puzzle_ans is correct

puzzle_ans 

is wrong

FRAGMENTS

COLLECTOR

PUZZLE CONTROLLER

COOKIE

MANAGER

DIPSIP ...

EC MANAGER

IP TCP

TCP HTTP

CookieIP ...

ModeIP ...

MODE CHANGER

POSTROUTING

CCBF

AnsPuzID ...

SYN_CK

CHECK
TCP HTTP

TCP

cookie granted

Fig. 2. Functional diagram showing major submodules in action when
one of the registered servers behind FS is under a suspected attack
mode

IV. PERFORMANCE EVALUATION

This section reports the results of experiments testing FS’s

performance and scalability under a variety of DDoS attacks.



A. Experimental Setup
Figures 4 and 5 illustrate the testbeds used in our experi-

ments. Our experiments compare FS’s performance when FS

is installed (i) in customer premises, as a bridge in front

of protected servers (CPE), vs. (ii) in the ISP side of the

protected servers’ access link (outsourced). The testbed’s link

x was configured to emulate CPE with bandwidth of 1.5 Mbps,

a maximum latency of 70ms and burst of 8KB using Linux’s

traffic classifier’s (tc) token bucket filter. On the other hand, for

emulating the outsourced configuration, we set x’s bandwidth

to 1 Gbps.

We wrote a simple test program, authclients.c, that

uses aliased IP addresses to send authenticated (i.e., legitimate

users’) HTTP GET requests to a web server at a user-specified

rate (in our experiments, one request per second for ten

seconds). When the test program terminates, it prints the

response time for each request. The response time may include

client authentication by FS.

In the first two experiments, we set the service times of

HTTP GET requests to 10 ms plus the time to transmit an

8 KB web page. We report results using HTTP digest for

client authentication. Results using CAPTCHAs were similar.

To emulate WAN conditions (specifically, queueing and trans-

mission delays totaling 100 ms), we used netem[11]. Unlike

the first two experiments, the third and fourth experiments test

FS defenses that require server software modifications.

B. Results
The first two experiments were conducted in testbed 1 and

compare FS’s resilience against some popular DoS attacks.

The remaining experiments were performed in testbed 2 and

test coordination between FS and server authentication and

consequent classification of client packets.

REQUESTS GENERATOR, A

LEGITIMATE CLIENT

(HTTP GET requests/sec)

WEB SERVER, W 

GENERATOR, D

(requests/sec)

MALICIOUS PACKET

SWITCH

100Mbps

1 Gbps
1 Gbps

      FORWARD SENTINEL, FS 

x

Fig. 4. WAN Testbed 1
Fig. 3a shows when D ran a DoS traffic generator that used

asynchronous TCP sockets to send HTTP GET requests with

aliased IP addresses. To allow transmission of packets at a

steady rate, D’s kernel was updated to allow up to 24, 000
file descriptors per process. We also installed a fragroute

daemon[12] in A with fragment size set to 96 bytes. Under

this testbed FS withstands well against such fragmentation

attacks (note that, in this test, FS cookies were roughly in the

fourth fragment of the first datagram of each HTTP request).

Moreover, the figure shows that outsourced FS outperformed

CPE FS also in this case. The next experiment evaluates

the effectiveness of server signaling to FS, when bots pass

FS but not server authentication. This scenario could occur

when a botmaster breaks FS’s authentication puzzles(e.g.

CAPTCHAs) but not the server’s(e.g. hardware tokens).

This scenario was emulated using WAN testbed 1

with a CAPTCHA authentication scheme installed in FS.

authclients.c was configured to send CAPTCHA an-

swers to FS. For experimental purposes, FS’s CAPTCHA

puzzle module was defeated by reducing its library to only

one puzzle entry. Thus, the automated authclients.c tool

could always answer FS’s puzzle.

We also created a custom Apache server application that au-

thenticates prospective clients using the HTTP digest scheme.

This authentication ran in the primary web server W1. High

priority clients, after W1’s authentication, are immediately

granted access. On the contrary, bots fail to pass server W1’s

authentication tests. Consequently, W1 informs FS to blacklist

bots’ IP addresses.

We set the web page size and and the average service

times of the client connections to 4KB and 100 milliseconds,

respectively.

Results in Fig. 3b show that outsourced FS thwarts the bots’

attack thoroughly, even when bots defeat FS’s authentication,

if bots don’t pass server authentication. CPE FS also reduces

the effects of such attacks, although not as much as does

outsourced FS. Experiments testing FS packet classification

SW

GENERATOR, DREQUESTS GENERATOR, A REQUESTS GENERATOR, A

(HTTP GET requests/sec) (HTTP GET requests/sec) (requests/sec)

SECONDARY WEB 

SERVER, W2

PRIMARY WEB  

SERVER, W1

1 Gbps

1 Gbps

1 Gbps

100 Mbps 100 Mbps

MALICIOUS PACKETAVE. PRIORITY CLIENTHIGH PRIORITY CLIENT

x

    FORWARD SENTINEL, FS 

Fig. 5. WAN Testbed 2

were conducted in testbed 2. We again used FS’s CAPTCHA

authentication module. While authclients.c was used in

A, B used a modified authclients.c version which can

vary HTTP GET transmission rates. A’s traffic was set to

high-priority, while B’s was set to regular priority. iproute’s

tc was utilized to prioritize outgoing traffic in FS. The tests

were conducted using the Priority FIFO (PFIFO) scheduling

scheme, which uses separate queues for A and B based on

Assured Forwarding (AF) classes.

Initially, both the servers were in normal modes and the

clients in A and B accessed the primary web server to get

their pages. However, D’s malicious requests put the server

farm in suspected attack mode. Since the primary web server

W1 is FS- and QoS-aware, it authenticates and prioritizes

prospective clients with a second authentication scheme. We

installed a custom Apache server which authenticates and



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 500  1000  1500  2000  2500  3000

A
v

er
ag

e 
ti

m
e 

to
 a

cc
es

s 
a 

w
eb

 p
ag

e 
in

 A
 (

se
cs

)

Attack Rate from CAPTCHA−Aware Bots (HTTP GET requests/sec)

CPE FS
Outsourced FS

 1.5

 2

 2.5

 3

 3.5

 4

 2  4  6  8  10  12

A
v

er
ag

e 
ti

m
e 

to
 a

cc
es

s 
a 

w
eb

 p
ag

e 
(s

ec
s)

Request Rate from B (HTTP GET requests/sec)

A
B

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 2  4  6  8  10  12

A
v

er
ag

e 
ti

m
e 

to
 a

cc
es

s 
a 

w
eb

 p
ag

e 
(s

ec
s)

Request Rate from B (HTTP GET requests/sec)

A
B

Fig. 3. (a) Application-level DDoS attack I(Exp. 1), (b) Application-level DDoS attack II(Exp. 2), (c) PFIFO scheme when FS is
outsourced(Exp. 3) and (d) PFIFO scheme when FS is in CPE bridge(Exp. 4). FS machine is Intel Pentium 4 2.4 GHz (256 MB RAM).
W/W1 machine is Intel Pentium 2 400 MHz (128 MB RAM). W2 is Intel Pentium 3 600 MHz (128 MB RAM)

prioritizes clients based on the HTTP digest scheme. High-

priority clients, after the server’s authentication, are immedi-

ately granted access to the web page in W1, while regular-

priority clients are redirected to the secondary server W2.

Fig. 3c shows the response times for high- and regular-

priority clients when servers were under an attack rate of

2, 000 HTTP GET requests/sec and FS was outsourced and

configured for PFIFO marking. Fig. 3d similarly shows re-

sponse times for high- and regular-priority clients when servers

were under an attack rate of 20 HTTP GET requests/sec

and FS was configured as CPE with PFIFO marking. (The

attack rate used was much less in the latter case because

CPE FS withstands network DDoS attacks less well than does

outsourced FS.) In both configurations, the figures show that

FS correctly gave high-priority clients lower response times.

V. RELATED WORK

DDoS attacks mitigation has been an area of active research.

Forward Sentinel’s closest match is KillBots[3]. However,

it overcomes several limitations and refines algorithms and

data structures used in Kill-Bots. Kill-Bots in only compati-

ble with legacy HTTP/1.0 connections. On the contrary, FS

works correctly with HTTP/1.1, because it supports persistent

connections and pipelining features. Kill-Bots also implicitly

assumes that attackers do not spoof fields other than the IP

address or maliciously fragment packets. On the contrary, FS

performs stateful packet filtering and packet scrubbing to avoid

such attacks. Also, unlike FS, Kill-Bots drops requests from

blacklisted IP addresses even after malicious clients stopped

using them.

VI. CONCLUSIONS

We described and evaluated Forward Sentinel, a novel device

that similarly distinguishes malicious clients’ requests, but

does so in the network, upstream both of server and net-

work bottlenecks targeted by attackers. FS uses lightweight

mechanisms to signal to servers whether each packet’s origin

has been authenticated to be human, and to drop or classify

clients’ packets in accordance with further authentication by

servers. Because FS needs to perform client authentication in

the network without modifications in clients or servers and

at line rates even during DDoS attacks, its implementation

presents many challenges. Our experiments demonstrated that

FS’s client authentication and server signaling mechanisms

effectively preserve server availability for legitimate clients

during botnet-based attacks. FS’s mechanisms are flexible, co-

ordinate well with protected servers’ own client authentication

mechanisms, and add little overhead.

REFERENCES

[1] Cisco (2009). Cisco guard. http://www.cisco.com/en/US/products/ps5888.
[2] PowerTech Information Systems AS (2009). Smurf Amplifier Registry.

http://www.powertech.no/smurf/.
[3] Kandula, S., Katabi, D., Jacob, M., and Berger, A. (2005). Botz-4-sale:

Surviving organized DDoS attacks that mimic flash crowds. In Networked

Systems Design and Implementation (NSDI ’05). USENIX.
[4] von Ahn, L., Blum, M., Hopper, N., and Langford, J. (2003). CAPTCHA:

Using hard AI problems for security. In Eurocrypt ’03.
[5] Bernstein, D. (1996). Syn cookies. In SYN-Cookie Archives

(http://cr.yp.to/syncookies.html).
[6] Handley, M., Paxson, V., and Kreibich, C. (2001). Network intrusion de-

tection: Evasion, traffic normalization and end-to-end protocol semantics.
In Proc. 10th USENIX Security Symposium.

[7] van Rooij, G. (2001). Real stateful TCP packet filtering in IP filter. In
10th USENIX Security Symposium.

[8] Nichols, K., Blake, S., Baker, F., and Black, D. (1998). Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
In RFC 2474 (http://tools.ietf.org/html/rfc2474).

[9] Banga, G. and Druschel, P. (1999). Resource containers: A new facility
for resource management in server systems. In Proceedings of the 3rd

Symposium on Operating Systems Design and Implementation (OSDI

’99). USENIX.
[10] Brustoloni, J., Gabber, E., Silberschatz, A., and Singh, A. (2000).

Signaled receiver processing. In USENIX Annual Technical Conference

(USENIX ’00). USENIX.
[11] TheLinuxFoundation (2009). Net:netem.

http://www.linuxfoundation.org/en/Net:Netem.
[12] Song, D. (1998). Fragroute. http://www.monkey.org/ dugsong/fragroute/.


