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Abstract—Effective defenses against DDoS attacks that deplete
resources at the network and transport layers have been deployed
commercially. Therefore, DDoS attacks increasingly use normal-
looking application-layer requests to waste server CPU or disk
capacity. CAPTCHAs attempt to distinguish bots from human
clients and are often used to avoid such attacks. However,
CAPTCHAs themselves consume resources and frequently are
defeated. Kill-Bots reduces CAPTCHA overhead by pushing
client authentication into the kernel. However, Kill-Bots requires
kernel modifications, which can be infeasible. We describe the
design, implementation, and performance evaluation of Sentinel,
a network device that overcomes several limitations in Kill-
Bots. Sentinel can be easily deployed as a bridge in front
of server farms, modularly accepts a variety of present and
future authentication schemes, and can use network processors
to accelerate authentication. Experiments show that Sentinel
greatly reduces the impact of DDoS attacks on the response time
experienced by legitimate clients.

I. I NTRODUCTION

Distributed denial-of-service (DDoS) attacks are a major
security threat to web servers. In such an attack, an attacker
orders multiple hosts to send malicious traffic toward a server,
so as to deplete network bandwidth or server CPU, disk, or
memory capacity. DDoS activity can make commercial web
servers unresponsive for days and cause damages of millions
of dollars to the servers’ owners.

The first DDoS attacks, such as smurf and SYN attacks,
sought to deplete resources at the network or transport layers.
Effective defenses against such attacks have been deployed
commercially (e.g., [1], [2]). Therefore, attacks increasingly
use compromised hosts (bots) to send just enough application-
layer requests to deplete the servers’ CPU or disk capacity.
The latter attacks mimic flash crowds, i.e., natural peaks in
client traffic. Existing network-based defenses are unable to
distinguish between such attacks’ and legitimate traffic.

A popular server-based defense against application-layer
attacks is to use CAPTCHAs [3] to authenticate users.
CAPTCHAs are perceptual challenges that are easy for hu-
mans and infeasible for computers (e.g., recognizing distorted
text or speech). However, CAPTCHAs consume significant
server CPU and other resources. Thus, the authentication
process can itself be abused for denial of service. More-
over, authentication methods will need to evolve because of
attackers’ continued advances in breaking them. Kill-Bots
[4] reduces, but does no eliminate, CAPTCHA overhead
by pushing authentication into the server’s operating system

kernel. However, this solution still burdens the server, and is
infeasible if operating system code or personnel able to modify
it are unavailable. Additionally, Kill-Bots does not support
persistent connections and pipelining, and may blacklist IP
addresses indefinitely.

This paper contributes the design and implementation of
Sentinel, a network device for authenticating clients and
mitigating bot-based DDoS attacks. Unlike Kill-Bots, Sentinel
(1) can be deployed simply by installing it as a bridge in front
of an unmodified server or server farm, (2) can use network
processors to accelerate authentication and withstand large-
scale attacks, (3) fully supports HTTP 1.1, (4) when warranted,
rehabilitates previously blacklisted IP addresses, and (5) mod-
ularly accepts different client authentication methods.

Although Sentinel is easier to deploy and more scalable and
flexible than are server-based solutions, its design also presents
significant challenges. Because it is a network device, Sentinel
needs to perform TCP connection splicing, stateful packet
filtering, packet scrubbing, and deep packet inspection to avoid
network- and transport-layer attacks. We describe how Sentinel
avoids IP address spoofing, TCP SYN floods, fragmentation
attacks, and session hijacking while filtering out bot traffic at
Gbps transmission rates.

The rest of this paper is organized as follows. Section II
discusses in greater detail botnets and existing defenses against
their application-layer attacks. Sections III, IV, and V describe
Sentinel’s design, implementation and performance evaluation,
respectively. Section VI compares Sentinel to Kill-Bots and
other related work, and section VII concludes.

II. BACKGROUND

This section provides greater detail about botnets and meth-
ods for mitigating their application-layer DDoS attacks.

A. Botnets

Botnetsare networks of compromised hosts,bots, controlled
by abotmaster[5]. The hosts are usually infected by malware
that spread like viruses (e.g., as e-mail attachments or down-
loadable files) or worms (e.g., by exploiting server applications
with known vulnerabilities). Once it infects a host, the malware
downloads the bot executable from a known URL. Bots receive
commands from the botmaster through some command and
control (C&C) infrastructure. Most bots use Internet Relay



Chat (IRC) or HTTP servers for C&C, but peer-to-peer (P2P)
networks are increasingly being used.

Botnets are usually operated for profit and are available for
hire. For instance, in 2006, the owner of an online sportswear
store admitted having ordered a bot-based DDoS attack against
competing online stores [7]. Botnets can contain tens of
thousands of compromised hosts and generate up to tens of
Gbps of traffic [6]. In 2006, the Honeynet Alliance reported
botnets with median size of 40,000 nodes and maximum size
of approximately 350,000 nodes worldwide, 120,000 of which
visible at any time of the day.

DDoS attacks previously used anomalous traffic (such as
ICMP or SYN floods) with spoofed source IP addresses. More
recent attacks use sufficiently large botnets for generating
seemingly-normal HTTP requests that deplete the victim’s
CPU or disk capacity. In the network, it is often impossible
to distinguish if sources of such HTTP requests are legitimate
clients or bots.

B. CAPTCHAs

Researchers have proposed reverse Turing tests (RTTs) to
distinguish human clients from bots. RTTs evolve from the
original Turing test [9], but use a computer instead of a human
entity to judge test responses. The tests must be solvable by
a human, but infeasible for a computer.

Examples of reverse Turing tests are CAPTCHA graphical
puzzles [3]. Web sites currently use CAPTCHAs to pre-
vent automated spam-related activity, such as e-mail account
creation and online forum posts. The images are generated
using distortion techniques (Fig. 1) to resist automated object
recognition techniques [10].

Fig. 1. CAPTCHA visual test designs

As artificial intelligence techniques evolve, existing
CAPTCHA techniques can be expected to become vulner-
able and need to evolve too [11]. In 2002, researchers
reported a mechanism with 92% success rate of breaking
Yahoo CAPTCHAs [10]. Yahoo subsequently improved its
CAPTCHAs, but recent reports suggest successful attacks
against Yahoo [12], Windows Live [13], and Gmail [14]
CAPTCHAs. New, possibly radically different CAPTCHA or
other approaches for client authentication can be expected in
the future, e.g., using cognitive logic [15], pictures, or sound.

C. Kill-Bots

Kill-Bots’ client authentication method is fixed: it uses
CAPTCHAs to detect bot-based DDoS attacks that mimic
flash crowds [4]. A web server running Kill-Bots operates in
normal or attack mode, depending on the load it experiences.
When under attack, the server processes only requests with

a valid HTTP cookie. If a request arrives without such a
cookie, depending on the server’s load, the server’s kernel
probabilistically drops the request or replies statelessly with
a CAPTCHA puzzle. If a client request includes a valid
CAPTCHA solution, the server’s kernel replies with a cryp-
tographic HTTP cookie that the client includes in subsequent
requests to the server. Conversely, if a client includes invalid
CAPTCHA solutions in too many requests to the server,
the server blacklists the client and no longer considers any
packets with that source IP address. Blacklisting reduces load,
returning the server to normal mode. In normal mode, the
server processes requests regardless of HTTP cookies, but not
from blacklisted addresses. If legitimate clients later use those
addresses, they could be locked out of service.

Kill-Bots runs on the server itself and creates additional
load during an attack. The overhead can be greater dur-
ing prolonged attacks if the server must also dynamically
generate CAPTCHAs, which is a CPU-intensive task. With-
out CAPTCHA generation, Kill-Bots was reported to handle
DDoS attacks of up to 6,000 requests per second without
affecting response times [4].

III. D ESIGN

This section describes Sentinel’s goals and then each aspect
of its design.

A. Goals

Sentinel’s overall design goal was to overcome perceived
shortcomings in existing methods for mitigating application-
layer DDoS attacks against web servers. First, Sentinel should
be transparently deployable without client, server, or network
reconfiguration, including the case of server farms. Sentinel
achieves this goal by operating as a network bridge that splices
connections with clients and servers and performs stateful
packet filtering. Second, Sentinel should completely offload
attacks from servers and withstand large-scale attacks. Sentinel
achieves this goal by enabling hardware acceleration with
network processors. Third, Sentinel should fully support HTTP
1.1 features, such as persistent connections and pipelining.
Sentinel achieves this goal by performing packet scrubbing and
deep packet inspection. Fourth, Sentinel should not blacklist IP
addresses indefinitely. Sentinel achieves this goal by estimating
the load shed by the blacklist and clearing the blacklist when
addition of the shed load would still place server load within
normal range. Finally, Sentinel should enable diverse client
authentication methods. For example, for a web server whose
clients are securely registered out-of-band (e.g., bank), clients
should be able to use for Sentinel credentials obtained during
registration (e.g., passwords and tokens). Sentinel achieves this
goal by providing an extensible framework for accommodating
future CAPTCHAs, two-factor, or other authentication meth-
ods.

B. Modes of operation

Sentinel has two modes of operation,normal and sus-
pectedattack. Sentinel switches between them based on



server load estimates and two configuration parameters,
Lnormal < Lattack. To obtain such estimates, Sentinel pe-
riodically sends an HTTP request and measures the response
time of each server. Sentinel estimates the load on serveri as
an exponentially-weighted moving averageLi of i’s measured
response times. Whenmini Li ≥ Lattack, Sentinel puts server
i in suspected attack mode. Whenmaxi Li ≤ Lnormal,
Sentinel placesi again innormal mode.

C. Extensible in-network client authentication and collusion
busting

In suspected attackmode, Sentinel authenticates clients to
filter out requests from bots. Sentinel gives to authenticated
clients Sentinel cookies. If a request arrives without such a
cookie and without a response to an authentication challenge,
Sentinel replies with an authentication challenge. If a request
arrives with a valid response to an authentication challenge,
Sentinel replies with a cryptographic HTTP cookie that the
client will include in future requests. Sentinel forwards to
servers only requests with such a cookie. On the other hand, in
normalmode, Sentinel does not challenge clients and forwards
requests regardless of cookie.

The formats of the authentication challenge and response
depend on the authentication method used. The challenge may
contain a nonce to prevent replay. To facilitate use of future
authentication methods, Sentinel separates in a specific module
the functions for generating an authentication challenge and
verifying an authentication response according to a particular
method. The module also contains an initialization function
that loads and initializes an authentication table.

Note that the client’s IP address is insufficient to distinguish
authenticated clients: Most clients reach web servers via a
NAT router or web proxy [16] and consequently may share
a same IP address with bots. Cookies permit distinguishing
authenticated clients from other hosts that may exist behind
the same middlebox.

A botmaster might have a human obtain a cookie from
Sentinel and then distribute copies of the cookie to a large
number of bots. To thwart such collusions, Sentinel maintains
in an HTTP cookie table (HCT) the status of each cookie,
including expiration time and number of outstanding requests.
Sentinel can be configured to (a) allow use of a cookie only in
requests from a particular IP address, and (b) drop a request
containing a cookie if the request would cause the cookie’s
number of outstanding requests to exceedcookie req lim.
Option (a) is undesirable if clients may use mobile IP, while
option (b) requires Sentinel to analyze not only requests from
clients but also responses from servers.

D. TCP SYN cookies, asynchronous authentication, and con-
nection splicing

Sentinel combines three techniques to avoid committing
to unauthenticated clients Sentinel’s memory and any of the
protected servers’ resources.

First, when Sentinel receives from a client a request for
a new connection with a protected server, if the client is not
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Fig. 2. SYN cookies and asynchronous client authentication

blacklisted, Sentinel replies on behalf of the server with a SYN
cookie [2]. That is, Sentinel computes a cryptographic function
of the client’s and server’s IP addresses and port numbers, the
client’s proposed maximum segment size, the current time, and
a secret. Sentinel uses the result as the initial sequence number
(ISN) it sends to the client. Sentinel does not store any values
related to the client’s connection request. When the client
replies, its acknowledgment number should equal Sentinel’s
ISN plus one. Sentinel verifies this property cryptographically
and recovers from the client’s reply (instead of a table) the
TCP state needed for the connection with the client. Sentinel
may offload this function to the network interface card for
hardware acceleration.

Second, if Sentinel needs to authenticate clients (suspected
attackmode), it does so asynchronously, as illustrated in Fig.
2. When Sentinel receives a request from an unauthenticated
client, Sentinel uses the first connection A to convey Sentinel’s
authentication challenge to the client. To avoid holding TCP
state, Sentinel forcibly closes this connection. Using a new
connection B, the client presents its authentication response
to Sentinel. If the response is valid, Sentinel redirects the
client to the URL the client originally requested (HTTP 301
status code), provides the client an HTTP cookie, and again
forcibly closes the connection (the client always starts a new
connection after receiving status code 301). Finally, using
another connection C, the client resends its original request,
but now with the Sentinel cookie.

Third, when Sentinel receives a request in normal mode
or with a valid Sentinel cookie on a connection C, Sentinel
opens another connection C’ with the protected server. Sentinel
then splices together the client and server connections C and
C’, as shown in Fig. 3. The client’s and Sentinel’s ISNs in
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C are respectivelyISNc and ISNsc = SYN cookie. Sentinel’s
and the server’s ISNs in C’ are respectivelyISNss = ISNc

and ISNs. To splice the two connections C and C’ together,
Sentinel computes C’ssequence number shift (SNS): SNS
= SYN cookie − ISNs. Sentinel allocates for the spliced
connections an entry in Sentinel’sestablished connection
table (ECT), and stores C’s SNS in it.

ECT is a hash table indexed by the client’s and server’s
IP addresses and port numbers. When Sentinel receives from
a client a packet with acknowledgement matching an ECT
entry, Sentinel adjusts the acknowledgement number by SNS
and forwards the packet to the server, without checking for
cookies. Conversely, when Sentinel receives a packet from
the server, Sentinel adjusts the sequence number by SNS and
forwards it to the client.

When the HTTP cookie used to create an ECT entry expires
or Sentinel has not observed any valid packet in the respective
connections for a period longer than a threshold, Sentinel
forcibly closes the connections and destroys the ECT entry.

E. Blacklisting

Attackers might frivolously trigger authentications to ex-
haust Sentinel CPU cycles or network bandwidth, thus causing
denial of service to legitimate users despite the defenses
described in the previous subsection. To avoid such attacks,
Sentinel keeps track of how many authentication challenges it
has issued to each client IP address. Sentinel stores this infor-
mation in aChallenge Count Bloom Filter (CCBF). CCBF
containsN cells, each with ab-bit counternum chali. Each
IP address corresponds tok of those cells, selected byk hash
functions. Celli is said to besaturatedif num chali = S,
whereS = 2b − 1.

In suspectedattack mode, when Sentinel issues an au-
thentication challenge to a client, Sentinel increments the
corresponding CCBF counters bymin(1, S − num chali).
Conversely, when Sentinel receives a valid response to an au-
thentication challenge, Sentinel decrements the corresponding
CCBF counters bymin(η, num chali). A valueη > 1 is used
to avoid long-term error accumulation.

If all CCBF counters corresponding to an IP address are
saturated, Sentinel concludes that the IP address harbors a bot,
because a human would have given up before making so many
authentication errors. Sentinelblacklists the IP address and
does not consider future packets from it. Sentinel may offload

this filtering rule to the network interface card for hardware
acceleration.

During each time periodTave, Sentinel also measures the
number of requests that hit or miss the blacklist, respectively
Bh,i andBm,i, and calculates the average server loadsLi,ave.
By regression based on historical values, Sentinel estimates
the critical numberof blacklist missesBc,i that corresponds
to response timeLi,ave = Lnormal. Then, at the end of each
time period, ifLi,ave ≤ Lnormal andBm,i + Bh,i ≤ Bc,i,∀i,
Sentinel clears the blacklist, rehabilitating all IP addresses.

F. Stateful packet filtering, selective packet scrubbing, and
deep packet inspection

Sentinel gleans from observed packets the state of each
direction of a connection, including sequence and acknowledg-
ment numbers and receive window size. Sentinel records this
information in its ECT and uses it for stateful packet filtering
[17]. If a packet has protocol field values that are inconsistent
with the current state of the respective connection, Sentinel
drops that packet.

TCP and IP allow packets, including client requests, to be
split into multiple segments and fragments. Because reassem-
bly occurs only at the destination, attackers may intentionally
split packets to make it difficult for network-based defenses
to identify patterns. For example, an attacker can split into
two or more fragments a field containing a value that network
intrusion detection systems (NIDSs) might use as a signature.
Attackers can also intentionally make fragments overlap, such
that even if a NIDS can detect patterns across fragments,
the NIDS may miss a signature because the NIDS resolves
the overlap differently from the destination. Alternatively,
attackers can intentionally omit one or more fragments of
each packet so as to fill reassembly memory, causing denial
of service.

For efficiently dealing with such fragmentation attacks,
Sentinel selectively performs packet scrubbing [18]. Sentinel
drops fragments (but not segments) smaller than a certain
threshold. Until Sentinel has all segments and fragments in
a request’s application-layer header, Sentinel timestamps and
enqueues them by sequence number and offset. If contiguous
segments or fragments overlap, Sentinel trims the older one
before enqueueing the new one. If some segment or fragment
of an application-layer header is still missingTout time after
Sentinel has received the first segment or fragment of that
header, Sentinel drops all enqueued segments and fragments
of that connection.

When a request’s entire application-layer header is available,
Sentinel analyzes it in place (deep packet inspection without
copying). Sentinel uses the Knuth-Morris-Pratt (KMP) algo-
rithm [19] to search for keywords and patterns in the header.
The algorithm runs inO(http header length + pattern length)
time, enabling high throughput. Analysis also determines the
sequence number of the next application-layer header.

After analysis of an application-layer header, Sentinel for-
wards any segments or fragments with ending sequence num-
ber lower than the beginning of the next application-layer



header (i.e., Sentinel does not scrub the application-layer
payload). If analysis does not reveal the sequence number of
the next application-layer header then, after analysis of the
current header, Sentinel can be configured to forward packets
without scrubbing or further analysis until the connection is
closed. The latter case corresponds to legacy HTTP 1.0 without
persistent connections or pipelining [20], i.e., with only one
request per connection.

IV. I MPLEMENTATION

This section discusses Sentinel’s implementation, including
conventional and hardware-accelerated versions.

A. Conventional version

We implemented Sentinel as a Linux (v2.6.19.2) kernel
module using the ebtables link-level extension of the netfilter
framework [21]. We added Sentinel as a netfilter target. Users
can enable Sentinel at compile time using the kernel config-
uration tools (e.g. make menuconfig) and load the module
during runtime. Sentinel uses a softirq thread to examine
each incoming packet in an skbuff data structure. The thread
communicates directly with network interfaces (e.g., Ethernet
drivers) to transmit frames.

The netfilter link-level extension is configured using the
ebtables userspace library. This library loads the authentication
table into a memory-mapped segment shared with the kernel.
The organization of the authentication table depends on the au-
thentication module configured for Sentinel. Therefore, other
Sentinel components treat this memory segment as opaque
data.

B. Hardware-accelerated version

Although the conventional version described above filters
packets in the kernel, close to the network interfaces, in
softirq context, it still uses significant system resources (e.g.,
CPU cycles and buffer space). Thus, even blacklisted attackers
can cause denial of service to legitimate clients, because
Sentinel spends significant resources to discard their packets.
On the contrary, in the hardware-accelerated version, packets
from blacklisted clients are discarded by network interface
hardware. Thus, Sentinel can withstand attacks of much larger
scale. The following paragraphs discuss the hardware we used
for acceleration.

1) Netronome NFE-I8000:The Netronome Flow Engine
(NFE) I8000 platform is a network acceleration card that
contains an Intel IXP2855 network processor unit (NPU) and
on-card memory (Fig. 4). The NPU comprises an XScale
microprocessor and sixteen programmable microengines for
on-card packet classification. The NFE platform provides up
to 768 MB of RDRAM, 40 MB of QDR SRAM and Ternary
Content Addressable Memory (TCAM) space. The card has 4
SFP network ports and is connected to the host through a PCI
Express bus with 4 active lanes providing 2GB/s aggregate
capacity.

The NPU processes Ethernet frames arriving at the NFE
ports by matching them consecutively against the NFE’s flow
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Fig. 4. Structure of the NFE Platform

and rules tables. The flow table contains actions for existing
connections. If a packet does not belong to an existing flow, it
is matched against the rules table, which specifies actions for
packets from future flows. If the NPU finds a match, it copies
the rule back to the flow table (to process further packets from
the same flow) and executes the specified action. The NPU can
execute one of the following actions on a frame: drop, reject
(drop and send TCP reset message), pass (forward to all NFE
ports) or forward up to the host for further analysis.

2) Software APIs: The NFE platform comes with two
software packages. TheNetwork Flow Driver (NFD) is a
set of Linux kernel modules and userspace libraries providing
an API for low-level communication with the NFE over the
PCI Express bus (see Fig. 4). TheNetwork Flow Manager
(NFM) uses NFD to provide high-level APIs for application-
level packet classification:

• the zero-copy packet access APIallows NFM applica-
tions to access packets that the NFE NPU forwards to the
host. The API provides high performance by using zero-
copy DMA mapping to make frame buffers available to
userspace applications.

• theflow and rules APIsallow NFM applications to make
decisions about packet classification on the application
level and pass them to the NFE platform to enforce. The
flow API provides interaction with the NFE flow table
(existing flows) and the rules API is used to populate the
NFE rules table (future flows).

Sentinel’s NFM implementation uses the zero-copy packet
access API to allocate and deallocate packet buffers and to
send and receive frames through the NFE card. In suspected
attack mode, when a client is blacklisted, Sentinel uses the
NFM rule and flow APIs to instruct the NFE NPU to drop
packets from the client’s IP address in existing and future
flows. Dropping malicious packets in the NFE card signifi-
cantly reduces the number of packets reaching the host and
the resources used per bot connection.

C. Authentication modules

To test Sentinel, we implemented two authentication mod-
ules using different authentication methods.



The first module uses CAPTCHAs to distinguish bots
from human clients. CAPTCHA images with distorted text
containing each approximately 2,000 bytes are stored in the
authentication table. Each table entry also contains fields with
the respective solution, the time when the puzzle was sent
to a client, and whether a solution has been received. The
module prepares the challenge as two back-to-back packets.
The module rejects solutions received too long after the
challenge was sent or received after another solution for the
same challenge has been received.

The second module uses HTTP digest authentication (HTTP
401 status code) [22] to authenticate registered users. The
authentication table contains usernames, passwords, time of
last challenge, and number of successive failures. It is orga-
nized as a hash table with username as the key. The challenge
preparation function creates a single packet about 200 bytes
long. The challenge includes a nonce and a message authen-
tication code (MAC) that is a cryptographic function of the
concatenation of the nonce, current time, client address, and a
secret. The response includes the username and both challenge
and response. If the user’s last challenge was more than
failure reset time before, the response verification function
resets the user’s number of successive failures. If the user’s
number of successive failures is greater thanmax failures,
the function returns an error. Otherwise, the function verifies
the challenge and response and updates the user’s time of
last challenge and number of successive failures. Finally, the
function returns.

V. PERFORMANCE

We measured two metrics to evaluate Sentinel’s benefits dur-
ing attack: (a) response time for legitimate client requests and
(b) bridge CPU utilization. Ideally, Sentinel would preserve
response time for legitimate clients even when bot attack rates
increase. Moreover, Sentinel would ideally preserve low CPU
utilization even as bot attack rates increase. Low utilization
suggests the ability to handle attacks of even larger scale. We
report only results obtained with the HTTP digest authenti-
cation method. The results with the CAPTCHA method were
similar and are omitted due to page limitations.

A. Experimental Setup

Fig. 5 shows our experimental setup. We connected Sentinel,
a web server, a gigabit Ethernet switch and two attacker
hosts using 1 Gbps links. We also connected a legitimate
client to the switch using a 100 Mbps link. Sentinel’s NFE
card was configured to intercept TCP traffic and forward it
to an application running on the host for classification and
inspection.

Sentinel was implemented on a Dell Dimension 9200
configured with Pentium Core Duo at 1.6GHz and 2GB
RAM, NFE-I8000 card, PCI Express bus, and Fedora Core 5
operating system. We turned off one of Sentinel’s CPU cores
to facilitate performance measurement. The web server was
Apache 2.2.0 running on an IBM ThinkCentre with Pentium
4 CPU at 3 GHz and 512MB RAM. The two attackers were,
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Fig. 5. Experimental Setup for Flooding Attacks

respectively, an IBM ThinkCentre with Pentium 4 at 3GHz
(512 MB RAM, Fedora Core 3) and a Dell Dimension 4550
with Pentium 4 at 2.4 GHz (256 MB RAM, Ubuntu 6.10).
The legitimate client was a Dell Inspiron with Pentium Core
Duo at 1.6 GHz, 1 GB RAM and Ubuntu 6.10. The gigabit
Ethernet switch was an HP ProCurve 1800-8G.

We developed for the experiments a flooding utility,
asyncflood, that ran on the attacker hosts. It uses 3,000 aliased
IP addresses and creates asynchronous TCP connections to the
web server at high rates (up to 10,000 connections per second
on a single attacker). When a connection is established, the
utility sends an HTTP GET request for the web server root
index page. The utility ignores HTTP replies and TCP reset
messages.

B. Results

1) Response time for legitimate client requests:We mea-
sured response times in three scenarios: (a) direct DDoS
attack on the web server without Sentinel (baseline case), (b)
web server protected by Sentinel’s conventional implemen-
tation, and (c) web server protected by Sentinel’s hardware-
accelerated version. The latter case was measured after Sen-
tinel had blacklisted all attacker IP addresses.

In the baseline case (without Sentinel), we measured re-
sponse times up to 100 s (average 15-20 s) for DDoS attack
rates between 5,000 and 8,000 requests per second. Fig. 6
shows response times for legitimate client requests measured
in the other two cases, when DDoS attack rates exceeded
5,000 requests per second. The figure includes 90% confidence
intervals.

Fig. 6 shows that Sentinel’s conventional implementation
significantly mitigates the effect of DDoS attacks on the re-
sponse time experienced by legitimate clients. Their response
time was unaffected for DDoS attack rates up to 9,000 requests
per second. However, larger DDoS attack rates caused marked
increase in response time.

The figure also shows that Sentinel’s hardware-accelerated
version provides even stronger benefits. The response time
experienced by legitimate clients was largely unaffected over
the entire range tested (up to 12,000 requests per second). The
benefits of hardware acceleration are greater for larger attack
rates.

2) Bridge CPU utilization:Fig. 7 compares the bridge CPU
utilization of Sentinel’s two versions, with 90% confidence
intervals, as DDoS attack rates increased.
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Fig. 7. Bridge CPU utilization as DDoS attack rates increase

Sentinel’s conventional implementation exhibited roughly
linear increase in CPU utilization as DDoS attack rates in-
creased, reaching about 90% utilization at 10,400 requests per
second. CPU utilization then nearly saturates, explaining the
marked increase in response time experienced by legitimate
clients: Sentinel’s CPU is unable to keep up with packet
arrival, and queueing delays and timeouts increase.

On the contrary, Sentinel’s hardware-accelerated version
barely had any CPU utilization over the entire range tested.
This is explained by the filtering of the attackers’ packets by
the network processor card, without consuming any resources
of the host.

VI. RELATED WORK

Sentinel overcomes several limitations and refines algo-
rithms and data structures used in Kill-Bots [4]. Kill-Bots
implicitly assumes that each HTTP request uses a separate
TCP connection. This is true only for legacy HTTP 1.0. On
the contrary, Sentinel works correctly with HTP 1.1, and in
particular persistent connections and pipelining. The latter

require Sentinel to perform deep packet inspection and parsing
HTTP headers, which Kill-Bots doesn’t do. Kill-Bots also
implicitly assumes that attackers do not spoof fields other
than the IP address or maliciously fragment packets. On the
contrary, Sentinel performs stateful packet filtering and packet
scrubbing to avoid such attacks. Unlike Sentinel’s CAPTCHA
module, Kill-Bots does not detect if a solution for a puzzle has
already been received; consequently, bots can guess multiple
times. Also, unlike Sentinel, Kill-Bots drops requests from
blacklisted IP addresses even after malicious clients stopped
using them.

Blacklisting based on IP addresses, as done by Kill-Bots
and Sentinel, can cause false positives. The source address in a
packet received by a server can be that of a middlebox, such as
a network address translator (NAT) or proxy. A middlebox can
serve both bots and legitimate clients; blacklisting blocks ac-
cess by both. Moreover, many legitimate clients have dynamic
IP addresses and could be assigned a blacklisted address. In an
extensive study, Casado and Freedman [16] found that, from
the point of view of a server, client address modifications are
very slow, taking on the order of days. They also found that
about 60% of the clients used NATs and 15% used proxies.
However, the number of clients using a particular NAT is, in
overwhelming majority, very small (one or two computers)
and located in the same place. On the contrary, proxies tend
to have more clients (ten or more) and those tend to be more
distributed. Thus, collateral damage from IP-based blacklists
would tend to concentrate on the latter, which are only 15% of
all clients. Moreover, clients whose proxy is blacklisted may
be able to use another proxy (there are many free available).

There are several proposals involving solution of puzzles
by clients. Juels and Brainard [23] proposed computationally
expensive cryptographic puzzles. However, such a defense
may be ineffective against botnets, because the latter can
effectively have unlimited computational power. CAPTCHA
alternatives using speech [24] or facial features [25] instead
of text have also been proposed.

WebSOS [26] is another proposal for protecting web servers
from DDoS attacks, using CAPTCHA puzzles and network
overlays. Compared to Sentinel, WebSOS is harder to imple-
ment because it requires changes in network router configu-
rations, and the Web server must be aware of the WebSOS
architecture.

Speak-Up [27] proposes that a server instruct its legitimate
clients to generate additional traffic to crowd out traffic from
automated bots. Such an approach, however, could cause
“bandwidth wars” in which botnets could have an advantage
because they have a larger pool of nodes to operate from.

A complementary approach consists in trying to detect and
eliminate bots, rather than mitigating their effects. Propos-
als along these lines include identifying botnets or bots by
considering their anomalous IRC behavior ([28],[29]), DNS
traffic patterns [30], DNS blacklist (DNSBL) queries [31], or
general network traffic patterns ([32],[33]). However, isolating
and removing botmasters, C&C servers, and bots is often
difficult because botnets typically span multiple administrative



and political boundaries.

VII. C ONCLUSION

Effective defenses against DDoS attacks that deplete re-
sources at the network or transport layers have been de-
ployed commercially. Therefore, DDoS attacks increasingly
use normal-looking application-layer requests to waste server
CPU or disk capacity. CAPTCHAs attempt to distinguish
bots from human clients and are often used to avoid such
attacks. However, CAPTCHAs themselves consume resources
and frequently are defeated. Kill-Bots reduces CAPTCHA
overhead by pushing client authentication into the kernel.
However, Kill-Bots requires kernel modifications, which can
be infeasible. We described the design, implementation, and
performance evaluation of Sentinel, a network device that
overcomes several limitations in Kill-Bots. Sentinel can be
easily deployed as a bridge in front of server farms, modularly
accepts a variety of present and future authentication schemes,
and can use network processors to accelerate authentication.
Our experiments demonstrated that Sentinel greatly reduces
the impact of DDoS attacks on the response time experi-
enced by legitimate clients. Benefits are especially large when
Sentinel uses hardware acceleration, because Sentinel’s CPU
utilization remains low even as attack rates increase. We tested
Sentinel with CAPTCHAs and HTTP digest authentication.
We are currently evaluating a replacement module with more
sophisticated client authentication methods.
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