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ABSTRACT
Duplication can be a powerful strategy for overcoming stragglers in
cloud services, but is often used conservatively because of the risk of
overloading the system. We call for making duplication a first-class
concept in cloud systems, andmake two contributions in this regard.
First, we present duplicate-aware scheduling or DAS, an aggressive
duplication policy that duplicates every job, but keeps the system
safe by providing suitable support (prioritization and purging) at
multiple layers of the cloud system. Second, we present theD-Stage
abstraction, which supports DAS and other duplication policies
across diverse layers of a cloud system (e.g., network, storage, etc.).
The D-Stage abstraction decouples the duplication policy from the
mechanism, and facilitates working with legacy layers of a system.
Using this abstraction, we evaluate the benefits of DAS for two data
parallel applications (HDFS, an in-memory workload generator)
and a network function (Snort-based IDS cluster). Our experiments
on the public cloud and Emulab show thatDAS is safe to use, and the
tail latency improvement holds across a wide range of workloads.
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1 INTRODUCTION
Meeting the performance expectations of cloud applications is chal-
lenging: typical cloud applications haveworkflowswith high fanout,
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involving multiple potential bottleneck resources (e.g., network,
storage, processing, etc.), so even a single slow component, or a
straggler, ends up delaying the entire application. Studies show
that stragglers can cause significant increase in tail latency [14,
17, 29, 57]. Because a slew of unpredictable factors (e.g., failures,
load spikes, background processes, etc.) can cause stragglers [17,
28, 38, 75], overcoming them is difficult, especially for application
workloads with small requests that only span tens to hundreds of
milliseconds – for such applications, the time to detect and react to
stragglers is typically too short [40].

A powerful approach for dealing with stragglers is to avoid them
using duplication. Duplication can leverage the inherent redun-
dancy present at different levels of a typical cloud-based system
– redundant network paths [30, 34, 39, 46] or replicated applica-
tion and storage servers – to overcome a broad range of straggler
scenarios. For example, Dean et al. describe a collection of “tail
tolerant” techniques used at Google, which duplicate get() requests
for large scale data parallel applications [28]. At the network level,
prior work has shown the benefits of duplicating flows (or specific
packets of a flow) [41–43, 45, 49, 70, 74]. Similarly, other systems
have shown the efficacy of duplication for storage (e.g., [40, 64, 68])
and distributed job execution frameworks [17–19, 65, 76].

Despite the potential benefits of duplication, its use is fraught
with danger: the extra load caused by duplication can degrade
system performance or evenmake the system unstable. For example,
a duplicate get() request will not just create extra work for the
application and storage servers, but it also increases the load on
other resources (e.g., network, load balancers, etc). Because of this
danger, existing systems typically use duplication in a conservative
manner, employing techniques that selectively issue duplicates. For
example, in hedged-request [28], a duplicate is issued only if the
primary does not finish within a certain time (e.g., 95th percentile
expected latency). Such heuristics can turn out to be adhoc, as
workload and system load changes [31], making today’s multi-
layered cloud systems even more brittle and complex.

We argue that these challenges stem from lack of explicit support
for duplication, and call for making duplication a first-class concept
in modern cloud systems: it should be easy to specify duplication
requirements, and different layers of the system should have ex-
plicit support for meeting these requirements. Toward this goal, we
identify three important questions that need to be answered first: i)
Can we have duplication policies that are aggressive enough to reap
the full benefits of duplication, yet are safe to use in today’s multi-
layered cloud systems, ii) Can we design abstractions that make it
easy to support diverse duplication policies at different layers of
the system, and iii) How can we effectively deal with legacy layers
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that cannot be modified to support duplication? Our work seeks to
answer these questions and makes two contributions.

Our first contribution is a new duplication policy, duplicate-
aware scheduling or DAS, a multi-layered duplication policy that
makes aggressive use of duplication, but keeps the system stable
through a combination of two well known primitives: prioritization
and purging. Prioritization ensures that duplicates are treated at a
lower priority and don’t harm primaries while purging ensures that
unnecessary copies in the system are removed in a timely manner
so they do not overwhelm any auxiliary resource in the system.
In this way, DAS is grounded in theory and informed by practice:
it leverages key recent results in scheduling theory [32], which
shows the benefits of prioritization when duplicating requests, with
the insights from practical, large-scale systems, which show the
need (and benefits) of purging [28]. Finally, DAS is multi-layered,
providing suitable support at key layers (e.g., network, storage) of
a typical cloud system. As we discuss in §2.1, it is the combination
of aggressive duplication, using both prioritization and purging,
and multi-layer support for duplication that makes DAS a unique
duplication policy.

Our second contribution is an abstraction, duplicate-aware stage
(D-Stage), that makes it easy to support DAS and other duplication
policies at different layers of a cloud system. A D-Stage comprises
of queues with suitable duplication controls that are necessary for
supporting common duplication policies. The D-Stage abstraction
provides three key benefits.

First, there is a decoupling between the duplication policy and
mechanism, through a high level interface that exposes key dupli-
cation policy controls – such as the number of duplicates, their
priorities, when and how they should be dispatched and purged,
etc. – while hiding the details of their implementation mechanism,
such as what prioritization or purging mechanism is used.

Second, a D-Stage operates on the notion of a job, which has
an associated metadata that consistently identifies the duplication
requirements of a job as it travels across different layers of the
system – e.g., from an application request to network packets and
I/O requests – enabling consistent treatment of duplicates, such as
differentiating between primary and duplicates or not duplicating
an already duplicate job.

Third, a Proxy D-Stage, which is a special type of D-Stage, helps
in dealing with the challenge of legacy layers that may not be
amenable to modification. A Proxy D-Stage is inserted in front of a
legacy layer, in order to approximate the duplication functionality.
It has all the functionality of a typical D-Stage but also supports
throttling of jobs going into the legacy layer, keeping as many jobs
in its own queues, in order to retain control over key duplication
primitives, such as prioritization and purging.

We validate our contributions in the context of challenging work-
loads involving data-parallel applications and networks functions
(NF). For data-parallel applications, we use the Hadoop Distributed
File System (HDFS) and DP-Network [23], a research prototype
used for small in-memory workloads (e.g., web search [14]). For
both applications, a read()/get() request is duplicated and each
copy is sent to one of the multiple available replicas; in this sce-
nario, data could be served from disk or memory, which could
create different bottlenecks in the system (e.g., network, storage).
We implement D-Stages support for storage and network layers,

leveraging existing mechanisms for prioritization and queuing that
are available in commodity servers (e.g., CFQ disk scheduler [7],
Priority Queues, etc). For NF evaluation, we consider a distributed
IDS cluster scenario, where CPU is the main bottleneck, and D-
Stages at the network and processing levels are required to get the
full benefits of duplication.

We evaluate these applications using various micro and macro-
benchmark experiments on Emulab [3] and the Google Cloud [5].
Our experiments on Google Cloud validate the presence of strag-
glers, and DAS’s ability to overcome them. We also find that DAS is
seamlessly able to avoid hotspots, which are common in practical
workloads, by leveraging an alternate replica, thereby obviating
the need for sophisticed replica selection techniques [66]. Using
controlled experiments on Emulab, we show that DAS is safe to
use: even under high loads, when many existing duplicate schemes
make the system unstable, DAS remains stable and provides perfor-
mance improvements. Our results across a wide range of scenarios
show that DAS’s performance is comparable to, or better than, the
best performing duplication scheme for that particular scenario.

In the next sections, we describe our contributions and how we
validate them. As we discuss in §8, our work also opens up several
interesting directions for future work, such as implementing the
D-Stage abstraction for other resources (e.g., end-host network
stack) and potentially combining the work done by the primaries
and duplicates to improve system throughput.

2 DUPLICATION POLICIES
A plethora of existing work focuses on the use of duplication for
straggler mitigation in cloud systems [17–19, 28, 40, 45, 49, 54,
64, 65, 70, 73, 74, 76]. We first review these policies by distilling
the key design choices they make (§2.1), and use this analysis to
motivate the need for a new multi-layered duplication policy that
is aggressive, yet safe to use (§2.2).

2.1 Design Choices for Duplication Policies
We identify three key design choices that existing duplication poli-
cies need to make.
1 Duplication Decision. A fundamental decision is what to
duplicate and when to duplicate – we refer to this as the duplication
decision. Existing proposals fall into two broad categories: i) In full
duplication schemes (e.g., Cloning), every job is duplicated, which
simplifies the duplication decision, but dealing with the extra load of
duplicates and keeping the system stable under high load is a major
challenge. ii) In selective duplication schemes [17, 19, 28, 74, 76], only
a fraction of jobs are duplicated based on some criteria (e.g. job size,
duplication threshold, etc.). For example, Hedged [28] duplicates
a job if it fails to finish within the 95th percentile of its expected
latency. Such techniques are usually safe, but can be complex to
get right, typically requiring careful tuning of thresholds.

To validate the above observation, we conduct a simple experi-
ment on a small scale HDFS cluster where a client retrieves objects
of 10MB size under different policies. Details about the experi-
ment setup, including the noise model used to create stragglers, are
described in §6.2. Figure 1 shows that duplicating every request
(e.g. Cloning) only works at low load and overloads the system
at medium and high loads. Selective duplication (e.g. Hedged), on
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Figure 1: A simple experiment to validate limitations of ex-
isting proposals. Single-Copy is the base case. Hedged is se-
lective duplicationwith duplication threshold optimized for
specific load (e.g. Hedged-Low is optimized for low load).
Max-sized bar with black cross indicates that the corre-
sponding scheme becomes unstable.

the other hand, requires careful tuning of duplication threshold.
Hedged-Low (optimized for low load) provides benefits at low load
while Hedged-High (optimized for high load) performs well at high
load. However, at high load Hedged-Low becomes unstable as it
starts duplicating too many requests.

In summary, full duplication is simple but not safe1, while selec-
tive schemes like Hedged are (usually) safe but are difficult to get
right.
2 Duplication Overhead. Another choice that many duplica-
tion policies need to make is how to minimize the overhead of
duplicates. Existing approaches typically use one of the following
two primitives:
• Purging. Purging is used to remove unnecessary copy(ies) of a
job from the system in a timely fashion. While the use of purging
is quite common, schemes differ in terms of when to purge, some
purging extra copies when at-least one copy is finished [17, 28,
74], while others purging when at-least one copy starts being
served [28, 54]).

• Prioritization. Prioritizing primaries over duplicates provides
two benefits: i) it allows duplicates to make use of spare system
resources (i.e., work conservation), and ii) it shields primaries
from the overhead of duplicates (i.e., isolation) [28, 32, 70].
3 Cross-Layer Support forDuplication.Duplication can cause

extra load for other layers of the system, so another important con-
sideration for duplication policies is whether to provide support
at multiple layers of the system or not. Most existing proposals
don’t provide cross-layer support; the few proposals that provide
such support, do so in a highly application specific manner. For
example, Dolly [17] employs a technique called delay assignment to
avoid contention for intermediate data access – a technique highly
specific to job execution frameworks and targeting only specific
layers.

Synthesis.Table 1 summarizes the positioning of existing schemes
with regards to the design choices discussed above. We make three
observations. First, few schemes make use of full-duplication even
though it’s simple to use: the main challenge is that its aggressive
nature makes it challenging to keep the system stable. Second, most
existing schemes use either prioritization or purging, but not both.
Third, most schemes either do not provide cross-layer support or
only support it in a limited context. These observations motivate
1We define safety as system stability, where the queues are bounded.

Scheme Duplication
Decision Prioritization Purging Cross Layer

Support
Hedged Request [28],

AppTO [28], MittOS [40]
RepFlow [74]

Selective No Yes No

Mantri [19],
LATE [76], Dolly [17] Selective No Yes Limited

Sparrow [54],
Tied Request [28] Full No Yes No

Primary First [32] Full Yes No No
DAS(§2.2) Full Yes Yes Yes

Table 1: Comparison of various duplication schemes.

the need for our proposed duplication policy, which we present
next.

2.2 Duplicate-Aware Scheduling (DAS)
DAS is a multi-layered, aggressive, and safe duplication policy. It
proactively duplicates every job once, sending the primary and du-
plicate to two different servers. Yet it is safe because it employs both
prioritization and purging: duplicates are given strictly lower prior-
ity compared to primaries, and once a job finishes, its corresponding
duplicate (or primary) is immediately purged. This support needs
to be provided at every potential bottleneck layer of the system,
making DAS a first of its kind multi-layered duplication scheme.

The aggressive approach of DAS obviates the need to have a
sophisticated selection mechanism (e.g., speculation, using dupli-
cation thresholds, etc.) and thus allows dealing with challenging
workloads where jobs may last milliseconds or even less [40].

The choice of using both prioritization and purging is motivated
by recent scheduling theory results as well as practical consider-
ations: while prioritization helps DAS shield primaries from du-
plicates, purging ensures that unnecessary copies in the system
are removed in a timely fashion. Duplicates provide benefits even
though they are serviced at low priority because the likelihood of
finding both the primary and secondary to be overloaded is low
under typical system loads. Specifically, recent results from sched-
uling theory [32] show that prioritizing primaries over duplicates
is sufficient to deal with the duplication overhead while providing
the benefits of duplication, in a single bottleneck system. However,
real systems have multiple layers, and purging is required because
it ensures that any auxiliary system resource does not become a
bottleneck. For example, duplicate jobs waiting in a lower prior-
ity queue may cause exhaustion of transmission control blocks
(TCBs), limit buffer space for primary jobs, or increase contention
overhead of thread scheduling. Not surprisingly, for this reason,
purging is considered an important component of many duplication
schemes [28].

Finally, since in practical systems any layer can become a per-
formance bottleneck, the multi-layered approach of DAS enables
duplication support at every such layer, albeit the full DAS func-
tionality is typically not used at every layer. For example, a job
is duplicated only once at a specific layer (depending on the use
case), while other layers may just provide prioritization and purging
support for that job.

In summary, DAS is the right duplication policy because: i) it
is simple, ii) it allows duplicates to make use of spare system re-
sources (e.g., network bandwidth) while shielding primaries from
the overhead of duplicates, and iii) its multi-layered approachmakes
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it robust under practical cloud scenarios, where the bottlenecked
resource (e.g., network, storage) is unknown.

To illustrate the richness of DAS, we now describe two use cases,
which both involve multiple diverse layers.

1- Data Parallel Applications. Figure 2 shows an example
of a get() operation in data parallel applications (e.g., MongoDB,
HDFS). On the client side, at the application layer, DAS duplicates
a get() request at lower priority and sends both the primary and
the duplicate to a subsequent layer, scheduling them based on their
priority. Other layers in this example – like the network and storage
– don’t create any more duplicates: they just provide differential
treatment (prioritization) to primaries and duplicates. Once the
primary (or duplicate) finishes, DAS purges the other copy, with all
subsequent layers removing any corresponding job(s) from their
queues.

2- Network Function Virtualization (NFV). Cluster deploy-
ments of NFs are common in today’s cloud environments. These
clusters are often CPU bound, e.g., an IDS cluster which process
incoming packets to detect malicious traffic. Unlike the previous
case, here an intermediate D-Stage is responsible for job duplica-
tion in an application agnostic manner. As shown in Figure 3, a
network layer (load-balancer) duplicates packets on the critical path

SchedulerDispatcher

J1,p

J1,d 

Job (J1)+ metadata

1 2 3Priority queues

Figure 4: TheD-Stage abstraction has three components. Job
+metadata enters the stage, the dispatcher (1) creates a dupli-
cate copy (if required) and puts the job(s) in their respective
priority queues (2). A scheduler (3) schedules them in a strict
priority fashion. Jobs can also be purged (not shown).

dispatch (job, metadata)
schedule()

purge (job-id(s), CASCADE_FLAG)

Table 2: D-Stage Interface

of flows (in-network duplication) and forwards the primary and
duplicate flows to different nodes in the NFV cluster. A processing
layer running at each NF node processes packets in a priority-aware
fashion: duplicates are only processed if there is spare capacity on
that node. Yet another network layer is responsible for taking pro-
cessed packets, and filtering out duplicates before forwarding them
to the next layer, which could be a cluster of web-servers running
a data-parallel application.

While these use cases illustrate the diversity of layers and their
use, they also point to the main challenge: how to simplify support-
ing a range of duplication functionality at such diverse layers of
typical cloud systems.

3 THE D-STAGE ABSTRACTION
We propose D-Stage, an abstraction that simplifies supporting rich
duplication policies (including DAS) at multiple, diverse layers of a
cloud system. A D-Stage comprises of queues, which are inserted
at potential bottleneck layers of a system, providing the necessary
control for duplication, such as when to create a duplicate, its prior-
ity, and support for purging. Figure 4 zooms into a D-Stage: each
D-Stage operates on a job with associated metadata (e.g., id, pri-
ority) that consistently identifies the job across different layers of
the stack, and supports key duplication controls through a high
level interface (Table 2). The D-Stage abstraction provides three
key benefits:

1. Making duplication visible across layers. While the no-
tion of a job changes across layers – such as a flow for a transport
D-Stage and a packet for a network D-Stage – the associated meta-
data with a job (e.g., id, priority) consistently identifies that job and
its duplication requirements. This ensures that a job can be tracked
across layers (e.g., for purging), gets differential treatment (e.g.,
lower priority for duplicate jobs), and layers don’t end up making
unnecessary duplicates of jobs that have already been duplicated.
This simple requirement of associating the right metadata with

249



Reducing Tail Latency using Duplication:
A Multi-Layered Approach CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

jobs is crucial for making duplicates a first class concept in cloud
systems. (§3.1)

2. Decoupling of policy and mechanism. By providing con-
trol over key duplication primitives through a high level interface,
a D-Stage decouples the duplication policy from the mechanism,
enabling support for rich policies at the top and diverse imple-
mentations at the bottom. As a concrete example, the policy may
specify that duplicates should be given strictly lower priority, but
the mechanism will decide the best way to support such prioritiza-
tion. The benefits of this separation of concerns are well known in
systems design. It is even more crucial for duplication in today’s
cloud systems which involve many diverse layers: it will be imprac-
tical for system administrators, who want to specify policies, to
implement duplication mechanisms that are optimized for specific
resources, such as storage, network, etc. Similarly, this decoupling
allows specifying different policies without worrying about the
underlying implementation details. (§3.2)

3. Support for legacy layers. IntroducingD-Stage into existing
layers could be challenging: modifying a layer may be infeasible,
and some layers may not be amenable to purging or queuing of
jobs (e.g., MongoDB [40]). A D-Stage abstraction can also support
a Proxy D-Stage, which can approximate the behavior of a legacy
D-Stage. The key idea is to throttle jobs going into the legacy layer
to retain control over prioritization and purging in a preceding
Proxy D-Stage. (§3.3)

job-id //identifies the job

priority //priority of the job
start-time //arrival time in the system
sched-time //wait time before scheduling
duplication() //creating duplicate copies
atStart() //processing when its turn comes

atEnd() //processing when done

Table 3: Job Metadata

3.1 Job and Metadata
As noted earlier, each layer has its own notion of a job. For exam-
ple, at the network D-Stage, the job could be a packet while an
application layer D-Stagemay operate on read requests for files/ob-
jects. Each job should have an associated metadata that contains
duplication specific information:

Table 3 lists the metadata required by a D-Stage. A job-id is
used to identify a job – it should be unique and consistent across
D-Stages, so a D-Stage can purge a job which is enqueued inside
another D-Stage using the job-id. To work with legacy layers, a
D-Stage can also maintain A mapping of its own job-ids to the
job-ids used by the legacy layer. For example, an application layer
D-Stage can maintain the mapping of application-level request
to its corresponding flow or socket identifier that is used at the
transport layer.

The priority of a job is used to decide how this job will be
scheduled. Many jobs already have a notion of priority, even if it
is rarely used. For example, the ToS bit in the packet header can
be used to determine the priority of a packet. The start-time and
sched-time are useful in making scheduling and purging decisions.
For example, a scheme may decide to purge jobs which have been

outstanding for a certain time; similarly, a scheme like hedged-
request may want to delay the scheduling of a duplicate until a
certain time. The dup-stage-id2 is used to specify the D-Stage
responsible to duplicate the job. For example, in the case of NFVs
(§2.2), the stage-id of the intermediate network D-Stage will be
used here.

Finally, the metadata includes three callbacks: i) duplication(),
which implements the duplication logic, such as whether the job
should be duplicated, and if yes, the number of duplicates to create,
and any metadata that is necessary for each duplicate copy, such as
its priority, new name, etc, ii) atStart(), which implements any
logic that needs to be executed when a job is scheduled (e.g., purge
corresponding copy, as in Tied-Request) and iii) atEnd(), which
provides similar support for any action that needs to be taken once
the job is finished executing; again this can be useful for purging the
corresponding copy of the job. These functions are implemented
by domain experts in a layer specific fashion.

Passing Metadata Across Layers. In an end to end system, a
job may traverse different D-Stages. This requires passing meta-
data across different layers of the system. In DAS, a prior D-Stage
translates metadata for the next D-Stage. However, for some D-
Stages this translation may not be trivial. Under such conditions,
the dispatcher can have pre-configured rules for job processing. For
example, to duplicate a job at a networkD-Stage, its dispatcher may
use the hash of the packet header fields in a match-action fashion
to create and dispatch duplicate copies.

3.2 Interface
We identify key duplication primitives that can be combined to
support a wide range of duplication policies. These primitives are
used through a high-level interface (Table 2), hiding the implemen-
tation details from other system layers. We describe the interface,
and comment on its use for common types of D-Stages, such as
network, storage, and processing.

dispatch(job, metadata). The dispatcher controls how jobs are
placed inside the D-Stage queues. The dispatcher interprets and
acts on the metadata: it creates the necessary duplicates using the
duplication() callback and puts both the primary and duplicate jobs
in their respective queues. For example, in Figure 4, the job J1 is
duplicated (following DAS) as job J1,p with high priority and J1,d
with low priority – J1,p goes into the high priority queue and J1,d
is enqueued in the low priority queue. Jobs with a later start-time
are put in a special delay queue (with an associated timer) where
they wait until the timer expires or are purged from the queue. In
general, we do not expect the dispatcher to become a bottleneck
for a D-Stage. However, under high load it can stop duplicating
jobs, following the DAS principle that duplicates are strictly lower
priority.

schedule(). A D-Stage requires a priority scheduler to provide dif-
ferential treatment to primaries and duplicates based on duplication
policy. A job’s turn should be determined by its priority, and once
it is scheduled, the scheduler should first execute atStart(), then
process the job (just like it would do normally), and finally call the
atEnd() function. An ideal priority scheduler should ensure strict
2Each D-Stage is identified by a stage-id.
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Scheme Duplication() atStart() atEnd()
Cloning Duplicates job at same priority. None Purges other copy

Hedged
▶ Duplicate job at the same priority.
▶ Put duplicate in special wait queue.
▶ Set timer to 95th% of expected latency

None Purges other copy.

Tied Duplicates job at same prioirty Purges other copy. None
DAS Duplicates job at lower prioirty None Purges other copy

Table 4: Supporting different duplication policies using D-
Stage

priority – with preemption and work conservation – while incurring
minimal overhead. A desirable feature in this context is to have the
ability to break a large job into smaller parts so that the scheduler
can efficiently preempt a lower priority job and then later resume
working on it in a work conserving manner.

Fortunately, many layers already support some form of priority
scheduling. For example, for storage applications, Linux supports
I/O prioritization using completely fair queuing (CFQ) scheduler.
Similarly, for CPU prioritization, we can use support for thread
prioritization on modern operating systems – for example, our im-
plementation uses the POSIX call pthread_setschedprio [9], which
can prioritize threads at the CPU level. Finally, modern switches
and end-host network stacks already provide support for prioritiza-
tion, where some header fields (e.g., ToS bit) can be used to decide
the priority of flows and packets.

Supporting Different Policies. Table 4 shows how the D-Stage
interface, specifically the three key functions, can support different
duplication policies. For example,Hedged requires the duplication()
function to implement a special wait queue for duplicate requests:
duplicates wait in this queue for a certain time (e.g,. 95th percentile
of expected latency) before being issued. Once a copy of the job
(primary or duplicate) finishes, atEnd() purges the other copy. Sim-
ilarly, for Tied, duplicates are created at the same priority and when
one of the two starts being served, it purges the other copy.

purge(job(s), CASCADE_FLAG). This interface supports specify-
ing one or more jobs that should be purged by this D-Stage. An
ideal purging implementation would allow purging of jobs from
both the queues as well as the underlying system while they are
being processed. The job(s) can be specified based on a predicate
on any metadata information, such as matching a job-id or those
jobs that started before a certain start-time. The CASCADE_FLAG
specifies whether the purge message should propagate to a subse-
quent stage, if the current stage is already done with processing
the job and can no longer purge it. For example, an application
may call purge() on the transport flow, which would result in the
transportD-Stage purging its corresponding data from the end-host
buffer, and if the flag is set, it will also call purge on the subsequent
network D-Stage, so the packets that have left the end-host (and
are inside the network) can be purged. Adding support for CAS-
CADE_FLAG requires a D-Stage to have the ability to invoke the
purge mechanism of the subsequent layer.

3.3 Proxy D-Stage
To support legacy layers in a system, we design a Proxy D-Stage,
which is a specific implementation of aD-Stage and sits in front of a
legacy (unmodified) stage; its goal is to retain maximal control over
jobs going into the legacy stage by keeping them in its own queues.
This allows the Proxy D-Stage to approximate duplication support

Throttler

2
3

1

Legacy
Stage

Throughput 
estimator 

Dispatcher

Priority
queues

Scheduler

N*

Figure 5: Proxy D-Stage sitting in front of a legacy stage. In
addition to the components of traditional D-Stages, it has a
throttler (1) which gets feedback from a throughput estima-
tor (2) monitoring the output rate of the legacy stage. Based
on this estimate, it discovers the multiplexing level (3).

of an unmodified stage, using its own mechanisms for prioritization
and purging.

Figure 5 shows the high-level working of a Proxy D-Stage. Un-
like a traditional D-Stage, it uses a special scheduler that throttles
outgoing jobs based on the output rate of the legacy stage. Thus,
the proxy D-Stage needs to be placed at a location where it can
control and observe the input and output of the legacy stage.

Objective. Choosing a suitable multiplexing level is important;
a small value can lead to under-utilization of the unmodified stage
whereas a large value would reduce queuing inside the proxy,
thereby lowering its control (e.g., prioritizing, purging). This trade-
off crystallizes into the following objective:maximize utilization (of
the unmodified stage) while minimizing the level of multiplexing
(i.e., dispatching as few jobs as possible).

Throttling algorithm. Our desired objective closely matches
with prior work on finding the right number of transactions to
dispatch to a database [60]. In their work, Bianca et al. use offline
queuing analysis to initialize the multiplexing level, which is then
adjusted using feedback control in an online setting.

We take a similar approach but, for simplicity the throttler is
initializedwith amultiplexing level of one.We use the throughput of
the legacy stage observed by the proxy tomodulate themultiplexing
level in the following way:
(1) Probing phase. The throttler increases the multiplexing level

as long as it observes commensurate increase in the throughput.
Otherwise, it stops and enters the exploitation phase.

(2) Exploitation phase. Having discovered the “best policy”, the
throttler continues dispatching requests as per the optimal tar-
get3 (N∗).
One of our primary use cases for the Proxy D-Stage is its use

with an unmodified HDFS server (data-node), which has no notion
of duplicates (§6). An HDFS cluster in a cloud setting could be
bottle-necked anywhere. Thus, we empirically verified that our
throttling algorithm was able to determine the right multiplexing
level for: i) SSD and HDD, if disk is the bottleneck, and ii) network
links, if the workload is being served from cache.

4 CASE STUDIES
We now present two case studies that show how D-Stages are used
to support DAS in real applications.

3This is the minimum number of requests needed to maximize utilization.
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4.1 Data Parallel Applications
We now describe how multiple D-Stages can be combined to imple-
mentDAS for two data parallel applications: i) HDFS [1] and ii) an in-
memory research prototype, which we refer to as DP-Network [23].
DP-Network comprises of client and server applications. The client
application requests the server to transfer a specified flow size (i.e.,
server sends the response) using a pool of persistent TCP connec-
tions between the client and the servers. DP-Network has been
used extensively in prior works (e.g., ClickNP [48], MQ-ECN [23],
FUSO [25], etc) to evaluate performance of network protocols over
small-scale ( 40 nodes), 10G clusters.

While both applications have similarities, there are also key
differences in terms of how the D-Stages are supported within
these applications (e.g., the purging mechanism and the use of
Proxy D-Stage). We first describe the common workflow of these
(and other data parallel applications) and how we insert D-Stages
at different layers. We then describe the specific support that we
added for both of these applications.

We divide the steps required to enable DAS support into two
parts: the request phase, and the response phase.

Request Phase. The first D-Stage is the request handler stage,
which is a processing D-Stage responsible for duplicating get()
requests. The API between this stage and the application is the
typical get() API, which is enhanced to carry information about
replicas and their priorities. As a processing D-Stage, it has support
for thread prioritization, so a lower priority thread can work on
sending the lower priority get() requests, which ensures that the
request generation part for duplicate requests does not hurt the
primary requests. This is the only stage in the get() pipeline where
duplication is involved. For all other stages, the dispatcher only
places the job in its respective priority queue.

Requests are sent over the network D-Stage as per their priority
until they reach their respective server node. On the server side,
there is a request handler processing D-Stage, which is similar
to the request handler stage of the client, except that it will not
duplicate the job, as indicated by the metadata for the request. The
request handler stage will then pass on the request to a storage
D-Stage, which will follow the functionality described earlier.

Response Phase. The responses sent by the primary and sec-
ondary replicas traverse the network, using their appropriate pri-
orities – high priority for responses from the primary replica and
low priority for responses from the secondary replica. On the client
side, there is another processingD-Stage called the response handler
stage. Like typical processing D-Stages, it uses multiple threads,
with different priorities, to process responses from the primary
and secondary replicas. Once the entire get() operation is complete,
the object/file is delivered to the application, and ongoing jobs at
primary or secondary replicas corresponding to this get() operation
are purged.

Support for HDFS. HDFS does not queue requests natively. In-
stead of adding queues and other D-Stage primitives, we decided
to test our Proxy D-Stage with unmodified HDFS datanodes. On
the client side, we added support for dispatching – creating and
sending multiple requests to different replicas. Because HDFS uses

a separate TCP connection for each request, we used the closure of
a TCP connection as a purge signal as well.

Support for DP-Network.We modified this application to intro-
duce D-Stages at both the client and server. The bottleneck for the
target workloads is the network, and the server already has support
for adding prioritization to different network flows. The original
server did not use queues, so we added support for queuing and
purging. Given that typical target workloads for this application
include small requests (e.g., a few KBs), the system uses persistent
TCP connections, so we explicitly sent purge messages from client
to server. These purge messages were sent using a separate TCP
connection. Given the small request sizes, we only purged requests
from the server queues as purging in-flight requests would not
provide much savings. We also added support for pipelining of
requests on the same TCP connection and used a fixed number of
pre-established connections – these optimizations improved our
baseline results (Single-Copy) compared to the vanilla implementa-
tion.

4.2 Network Function Virtualization
The case of NFV cluster is different from the data parallel applica-
tions in two ways: i) jobs are duplicated by an intermediate network
D-Stage instead of the application D-Stage, ii) purging is even more
challenging because of the extremely short timescale of (i.e., per
packet) operations.

Similar to Figure 3, we consider a Snort [12] based IDS cluster
deployment as a use case forDAS. We have a networkD-Stage, built
on top of Packet Bricks [11], which is responsible for duplicating
and load balancing incoming packets to IDS nodes. On each node,
a processing D-Stage runs primary and duplicate Snort instances
on different threads pinned to the same core at high and low pri-
ority respectively. It uses the POSIX call pthread_setschedprio() to
enable thread level CPU prioritization. Finally, another network
D-Stage sits after the IDS cluster and acts as a “response handler”;
it performs de-duplication and forwards only unique packets to an
interested application (e.g., a web server). We approximate purg-
ing at processing D-Stages on IDS nodes by limiting the duplicate
Snort’s queue size.

5 IMPLEMENTATION
In addition to the above applications, we have also implemented a
Proxy D-Stage in C++; it implements the basic D-Stage interface
(with support for purging, prioritization) as well as the throttling
based scheduler. The proxy is multi-threaded, supports TCP-based
applications, with customized modules for the HDFS application, in
order to understand its requests. The proxy has been evaluated with
multiple applications for benchmarking purposes: it adds minimal
overhead for applications with small workloads (e.g., DP-Network)
and for the applicationswherewe actually use the Proxy (i.e., HDFS),
the performance matches that of the baseline (without the proxy).
The proxy also supports a module to directly interact with the
storage and a client interface that can be used to generate get()
requests (similar to the HDFS and DP-Network applications). For
prioritization we use the different primitives available for each
resource (as described earlier). Specifically, for the network, we
used native support for priority queuing, including Linux HTB
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queues at end-points. For storage, Linux provides ioprio_set() [8]
system calls to explicitly set I/O prioritization of a request.

To add DAS support for HDFS we have implemented an HDFS
proxy D-Stage in ∼1500 lines of C and ∼300 lines of python code.
Similarly, to add DAS support for DP-Network, we added ∼750 new
lines of C code.

In general, the implementation complexity of DAS varies across
layers and each layer has its own challenges. We discuss some of
these in §8.

6 EVALUATION
Our evaluation covers a broad spectrum, in terms of environments
(public cloud and controlled testbed), policies, applications (HDFS,
DP-Network, Snort IDS), system load (low, medium, high4), work-
loads (with mean RCT from µs to ms and seconds), schemes against
which DAS is evaluated (e.g., Hedged, Cloning, etc), and micro-
benchmarking various aspects of our system (e.g., prioritization
and duplication overhead, etc). Our key insights are:
• DAS effectively avoids different types of stragglers observed
in the “wild”. In our experiments on the public cloud, we en-
counter different types of stragglers (e.g. caused by storage and
network bottlenecks). DAS is able to avoid most of these strag-
glers resulting in up to a 4.6× reduction in tail latency (p99 RCT)
compared to the baseline. (§6.1)

• DAS is safe to use. Using controlled experiments on Emulab,
we show that DAS remains stable at high loads, and performs as
well as the best performing duplication scheme under various
scenarios – all these benefits come without requiring any fine
tuning of thresholds. (§6.2 and §6.3)

• DAS can effectively deal with system and workload het-
erogeneity. A (somewhat) surprising finding of our study is that
the use of replicas through DAS can also shield small flows from
large flows (workload heterogeneity) without requiring flow-size
information (or approximation), as is required by most datacenter
transports [22, 52], also obviating the need for any intelligent
replica selection mechanism [27, 66]. (§6.3)

• DAS is feasible for an IDS cluster.We show that dealing with
lower priority duplicate traffic does not affect the throughput of
Snort nodes, and DAS is able to effectively deal with stragglers.
(§6.4)

6.1 HDFS Evaluation in Public Cloud Settings
The goal of this experiment is to evaluate the robustness of our
system in the “wild” – this environment has natural stragglers and
also involves multiple potential bottleneck resources (e.g., network,
storage).

Experimental Setup. We set up an HDFS storage cluster on 70
VMs on Google Cloud [10]. Our cluster has 60 data-nodes and
10 clients. For HDFS data-nodes, we use n1-standard-2 type ma-
chines (2 vCPUs, 7.5 GB RAM), while clients run on n1-standard-4
machines (4 vCPUs, 15GB Memory). The HDFS replication factor is
set to 3. We provision a total of 6TB of persistent storage[6] backed
by standard hard disk drives. Persistent disk storage is not locally
attached to the systems so the bottleneck could be anywhere in

4By our definition, low load is 10-20%, medium load is 40-50%, high load is 70-80%
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Figure 6: DAS’s performance in public cloud for HDFS clus-
ter. DAS reduces latency at p99 by 4.6× and mean latency by
5.4×.

the system. On each data-node, we have two types of D-Stages
that are used: a Proxy D-Stage for handling the HDFS data-node’s
unmodified storage D-Stage, and a network D-Stage, which makes
the end-host support DAS while using the cloud network5.

Workloads andMetric. For our experiments, the client generates
get() requests for a fixed size file (10MB), according to a Poisson
process.We run this experiment at medium load (estimated from the
disk throughput guaranteed by the cloud provider which translates
to more than 2000 requests per minute) for several hours. Our
selection of file size corroborates with the small file sizes6 observed
in the HDFS deployment at Facebook for their messages stack [44].
The size of our data set is ∼1.5TB. Our evaluation metric in all of our
experiments is the request completion time (RCT) unless specified
otherwise. Note that each job comprises of a single request – with
a higher scale out factor (multiple requests in a single job), we can
expect even more stragglers to show up [40].

Schemes. For this experiment, we compare the performance of
Single-Copy (base-case) with DAS under two different settings: i)
DAS-Storage, which only uses the storage D-Stage, ii) DAS-Full
which uses both storage and network D-Stages.

Avoiding Stragglers at Multiple Layers. Figure 6 shows the
CDF of RCTs for the three schemes. We observe a long tail for the
baseline: at p99.9, the latency is 5× higher than the median latency
(3.5× and 2.3× at p99 and p95 respectively). The results show that
DAS reduces the tail by 2.26× at p99 with only storage D-Stage
enabled. However, with both the storage and the network D-Stages
(DAS-Full) yields higher gains; RCTs are reduced at all percentiles
with the benefits more pronounced at higher percentiles (p99 la-
tency is reduced by 4.6×). Our analysis of the results revealed that
the long tail was primarily caused by poorly performing datanodes
– these straggers can be avoided even if we just enable the storage
D-Stage (DAS-Storage). However, there were also scenarios where
network was the bottleneck (e.g., data being served from the cache)
and by enabling the network D-Stage, we reduced the network
interference caused by the duplicate jobs. This highlights the ability
of DAS in dealing with different sources of stragglers, which may
appear at different layers of the system.

5Cloud networks present the big switch abstraction, with network bottlenecks only
appearing at the edges.
6Harter et al.[44] found that 90% of files are smaller than 15MB and disk I/O is highly
random.
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Figure 7: DAS’s comparison with other duplication based
schemes. DAS performs equally well at low and medium
loads while keeping the system stable at high load. Max-
sized bar with black cross indicates that the corresponding
scheme becomes unstable.

6.2 HDFS Evaluation in Controlled Settings
We now move to the controlled environment of Emulab, to evalu-
ate DAS against other duplication schemes under various scenar-
ios. This environment, combined with our use of a straggler/noise
model derived from our previous experiment, allow us to perform
repeatable, yet realistic experiments.

Schemes. We compare the performance of DAS against Single-
Copy (base case), and several duplication schemes proposed by
Dean et al [28]:Cloning,Hedged,AppTO, and Tied [28]. ForCloning,
the client proactively duplicates every request at the same priority.
For Hedged, if the first request fails to finish before p95 deadline,
the client makes a duplicate request to a different replica. Upon
completion of any of the two copies, the other is purged. In AppTO,
requests have a timeout value. If a request fails to finish before
timeout, the client purges the first request and issues its duplicate
request to another replica (request restart).

In our experiments we use 480ms as the threshold for triggering
a duplicate request for Hedged and AppTO schemes. The Tied
scheme duplicates every request and ties the identity of the other
replica with the request. When a request’s turn arrives, it sends a
purge message to its counterpart. The corresponding request, if not
finished, gets purged.

Experimental Setup. For this experiment, we setup a 10 node
HDFS cluster on Emulab [3]. We provision one client for this exper-
iment. We use d430 type machines (2x2.4 GHz 8-core with 64GB
RAM, 1TB 7200 RPM 6 Gbps SATA Disks). HDFS datanodes are
connected by 1Gbps network links; whereas, the client is connected
by a 10Gbps network link. For random read I/O requests, we bench-
marked the disk throughput to be less than the network link capac-
ity, making disks the bottleneck resource. This experiment uses the
same workload and metrics as used in the previous experiment.

Noise Model. To model stragglers, we derive a noise model from
our experiment on the Google Cloud (§6.1). We use the median
latency experienced by Single-Copy experiment as our baseline and
calculate the percentage of additional latency experienced by the
top 10 percentiles (p91 to p100). We then model this noise in our
experiment by randomly selecting 10% of the requests and delaying
the application response by the calculated factor. We use sleep()
call to delay the response.

Results. Figure 7 compares the performance of all the schemes at
the p99 latency across different loads. The load corresponds to three
regimes: low, medium, and high. This is the offered load, calculated
with respect to the bottleneck resource (i.e., disk)7. We make four
observations:
(1) At low loads, all the duplication based schemes perform well

compared to Single-Copy. They reduce the p99 latency by at
least ∼1.45×.

(2) At medium and high loads, the duplication overheads of aggres-
sive schemes (Cloning,Hedged) make the system unstable.DAS,
despite duplicating every request, remains stable and continues
to reduce tail latency (p99 by 2.37× and 1.9× at medium and
high loads respectively).

(3) DAS is most effective at medium load. This is because at medium
load, transient load imbalance on any one node is common de-
spite the overall load being moderate. This enablesDAS to lever-
age the spare capacity on other nodes. In contrast, stragglers
are less common at low load, while there are little opportunities
to exploit an alternate replica at high load.

(4) Tied is useful in terms of system stability (does not cause sys-
tem overload at high load). However, it fails to cope with noise
encountered once the request has started being served, which
is evident from low gains at low and medium loads. DAS suc-
cessfully handles such scenarios by continuing to work on both
requests until one finishes. Further, as we show in §6.3, the
lack of prioritization in Tied is catastrophic for workloads with
small requests, where Tied becomes unstable at high loads (see
Fig. 8b).

6.3 DP-Network in Public Cloud Settings
The goal of these experiments is to evaluate the performance under
scenarios where the network is the bottleneck. Compared to HDFS,
the workload is also different (smaller requests) which creates new
challenges and opportunities.

Setup.We use a 10 VM setup on Google Cloud with one client and
nine servers. On the client side, we use n1-highcpu-16 type VM,
while servers use the n1-stand-4 VM types. The server VMs are
rate limited to 1Gbps, while the client VM has a rate limit of 16Gbps.
This experiment predominantly focuses on small flows of size 50KB,
the average flow size of short flows in the web search workload [14].
We also consider the full web search workload, which includes mix
of large and small flows, and highlight howDAS is able to effectively
deal with flow size heterogeneity. Our client generates requests
based on a Poisson process, randomly choosing the primary and
secondary servers.

PerformanceUnderWorkloadHeterogeneity. Figure 8a shows
the performance of DAS with the DCTCP web search workload
(containing a mix of short and long flows) under medium load. DAS
significantly improves the RCT for short flows without hurting the
long ones. This happens because the co-existence of long and short
flows significantly affects the transfer times of short flows [14].DAS
is a natural fit for such scenarios. If a short flow and a long flow get
mapped to a critical resource together, namely a link or a queue,

7Note that this is the load induced by the primary requests only. Duplication may
increase the load depending on the particular scheme
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Figure 8: DAS under network bottleneck scenarios. (a) RCTs at p99 for web search workload [14] at medium load for different
flow sizes – Small (<100KB), Medium (100KB to 10MB), Large (>10MB) (b) RCTs at p99 across varying load when the flow sizes
are fixed at 50KB. At high load, DAS keeps the system stable while other duplication based schemes fail (c) performance for
fixed 50KB transfers at medium load at important percentiles. DAS is within 10% of Tied Request while considerably better
than other strategies at the tail (≥ p90). Max-sized bar with black cross indicates that the corresponding scheme becomes
unstable.

DAS provides opportunity to the duplicate requests of short flows
to get served from another less loaded replica. This highlights that
if we have replicas and have a scheme like DAS, we can shield small
flows from long flows without requiring flow size information (or
estimation) as is required by most datacenter transports [52].

Performance with Small Requests. We now focus on fixed
small (50KB) request sizes. We introduce noise through background
flows: the client randomly picks a server and starts a 10MB transfer,
emulating a hotspot in the network. Overall, the noise accounts for
only 1% of the total link capacity.

Figure 8b shows the performance of DAS at the p99 across vari-
able network loads – low, medium, and high. Similar to the HDFS
experiments, we observe that DAS remains stable at high loads
while providing duplication gains at low loads. Note that no other
duplication scheme remains stable at high loads; this is unlike the
HDFS experiment (where schemes like Tied worked well), and is
because of the challenging nature of this workload which involves
small (sub-millisecond) requests. In such scenarios, purging is less
effective at low loads (in fact, it has overhead) and prioritization
becomes critical, as highlighted by the slight difference in the per-
formance of DAS and the Cloning+Prioritization scheme. However,
our analysis shows that at high loads we need both prioritization
and purging in order to keep the system stable. Figure 8c zooms
into the medium load and highlights gains achieved over Cloning
(unstable at high load) and Single-copy (stable at high load) at dif-
ferent percentiles. It is also within 10% of the Tied scheme which
becomes unstable under high load.

6.4 DAS with IDS cluster
We evaluate the feasibility of using DAS when CPU is the bottle-
neck in the context of an IDS cluster. This can be useful in scenarios
where some nodes are stragglers while others have spare CPU ca-
pacity to process traffic. Unlike the previous evaluation scenarios,
which were focused on latency improvement, our measure of per-
formance for the IDS scenario is the system goodput i.e. the number
of packets processed by the IDS cluster8.

8Note that the IDS throughput can also affect the application latency (e.g., an over-
loaded IDS instance can cause packet drops which may result in increased latency for
applications [69])
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Figure 9: Feasibility of using duplication when CPU is the
bottleneck in an IDS cluster. (a) shows that at varying in-
put load, the introduction of a duplicate snort does not hurt
primary snort throughput. (b) shows that with a straggler
node, DAS outperforms Single-Copy as duplicate snort in-
stances running at other nodes can process the duplicates
of the packets that are backlogged at the straggler.

We consider an IDS cluster receiving packets at varying load
(defined as the arrival rate of traffic). For each load, we determine
the performance of having single snort (Single-Copy) instances
versus having two snort (Primary and Duplicate) instances. This
comparison highlights that duplication of work does not hurt per-
formance. Secondly, for each load, we consider the effect of having
a straggler node. This comparison highlights that duplication can
alleviate the problem of stragglers.

Experimental Setup. For this experiment we provision 5 d430
type machines on Emulab. Our setup reflects the layout given in
Figure 3 (§2.2). The Snort IDS runs on two nodes; each node runs a
primary and a duplicate instance of Snort at high and low priority
respectively. On each node, Snort instances are pinned to the same
core, and we use a single thread for the Snort instance. The other
three nodes are configured as a traffic source, an in-network packet
duplicator and an in-network de-duplicator.

A straggler in this setting could occur due to system overload
or some failure [36, 37]. To emulate this behaviour, we run a CPU-
intensive background task lasting 60% of the experiment duration
on one of the IDS nodes. This effectively results in a drop in Snort’s
throughput. We focus on the goodput – unique packets processed
per second (UPP/sec) – achieved by the IDS cluster under varying
system load.
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Figure 10: Prioritization benchmarks showing RCTs of high
priority requests with and without low priority background
traffic.

Prioritization Works. Figure 9a shows the goodput for varying
system loads without any stragglers. We observe that with thread
prioritization the impact of duplicate Snort on the goodput of pri-
mary Snort is negligible – even when the traffic arrival rate is
high.

DAS Alleviates Stragglers. Figure 9b shows the performance of
Snort for varying system load when one Snort node becomes a
straggler. We observe that goodput in the case of DAS is higher
than Single-Copy (no duplication). This is because packets dropped
by straggler node in the case of Single-Copy are processed by the
duplicate Snort instance in the case of DAS.

6.5 Microbenchmark Results
In this section we scrutinize the: i) overhead of disk I/O prioritiza-
tion, and ii) overhead of network prioritization.

Efficiency of network prioritization.We investigate the over-
head of the Linux network prioritization mechanism, incurred by
high priority requests in the presence of a low priority network
flow. We set up a client connected to a server on a 10Gbps link.
The client runs the DP-Network application and generates requests
according to the web search workload ([14]) at medium load. The
ToS bit for all these requests are marked as “high” while a single
long TCP flow runs in the background at low priority. Figure 10a
shows the CDF of the RCTs of the high priority requests. Ideally,
adding background traffic shouldn’t have an impact on the RCTs
of the high priority requests due to the enforced prioritization. We
observe an overhead of ≤ 20% at p10, at p20 it is ≤ 15% and at
p40 and beyond it is ≤ 3%. This shows that network prioritization
has some overhead for small requests (under 20%), but the gains
due to duplication outweigh this overhead, as shown earlier in our
macrobenchmark experiments.

Efficiency of disk I/O prioritization.We evaluate the efficiency
of Linux’s CFQ [7] scheduler which we used for disk I/O prioritiza-
tion. For this experiment, we deploy a 100GB data set on a Linux
server and run variable number of high priority and low priority
workers. Each worker continuously requests random 4KB blocks in
a closed loop. Figure 10b shows the CDF of RCTs of high priority
requests with and without low priority background requests. We
observe that roughly 20% of these requests are hurt by the presence
of low priority requests. While for realistic workloads the gains
of duplication outweigh this penalty, we have also verified that
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Figure 11: At low load, DAS services a large number of du-
plicate requests to make full use of spare system resources
which results in high overhead. At medium and high load,
request queues start to build up, causing many duplicate re-
quests to get purged from queues which results in decreased
overhead. For other duplication schemes (e.g. Hedged, and
AppTO), the overhead increases with increase in system
load.

this overhead can be further reduced by tuning CFQ configuration
parameters (e.g., slice_sync, slice_idle_time, etc).

DAS Overhead. We now evaluate the redundant (extra) work
(in terms of bytes processed) done by DAS in comparison with
other duplication schemes. Note that our previous experiments
show that doing this redundant work has no adverse effect on
application performance. However, the cost of doing redundant
work may translate in other forms, such as additional cost of using
the cloud resources (e.g., network bandwidth) or additional energy
consumption, aspects that require further investigation as part of
future work. For our analysis of redundant work, we use the same
setup as used in §6.2.

Figure 11 shows duplication overhead, as a percentage of addi-
tional number of bytes received on client, compared to the baseline
(Single-Copy). At low load, request queues don’t build up i.e., a
large number of duplicate requests get scheduled as soon as they
arrive into the system and finish processing before purge() is ini-
tiated. This results in high percentage of redundant work done
by DAS. As the load increases, request queues start to build up,
which results in purging becoming more effective in eliminating
the redundant work done by DAS. Specifically, many low priority
requests are either purged from the request queue or purged before
they complete which results in reduced overhead at medium and
high loads. The figure also shows that Hedged and AppTO have
low overheads at low load because they duplicate only a fraction of
jobs. However, increase in system load affects duplication decision
of these scheme (e.g., 95th percentile of expected latency). This
leads to duplication of more and more requests and results in high
overheads and even leads to system instability (e.g., Hedged at high
load).

7 RELATEDWORK
Other Duplication Policies. To supplement the earlier discus-
sion in §2.1, we comment on the most relevant duplication policies.
RepFlow [74] replicates certain flows (but at the same priority)
while other duplication schemes have highlighted the benefits of
prioritization through analysis and simulations [32, 33, 45, 70]. We
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show that for practical systems, in addition to prioritization, purg-
ing must be used. Further, none of the above schemes focus on an
abstraction for supporting duplicates. A recent work, MittOS [40]
introduced a fast rejecting SLO-aware interface to support mil-
lisecond tail tolerance but only consider storage stacks [40] – its
technique to reject a request based on expected latency needs is
highly customized for storage.

Elastic Data Replication. Elastic data replication [13, 16, 26, 71]
is considered an effective strategy to mitigate stragglers caused by
skewed data demands (e.g. hot and cold objects [26]) in distributed
processing frameworks (e.g., Hadoop). While these proposals look
at how to determine the right number of replicas for different data
objects, they are orthogonal to DAS. DAS focuses on retrieving data
from existing replicas: it randomly selects two out of any number
of available replicas to service read requests.

Stage Abstraction.Welsh et al. proposed the staged event-driven
architecture (SEDA) for designing scalable Internet services [72].
In SEDA, applications consist of a network of event-driven stages
connected by explicit queues. In contrast, we consider duplicate-
aware stages (D-Stages), where each stage may correspond to a
different resources (e.g., network, compute, and storage). IOFlow
[67] introduces the abstraction of a data plane stage for storage
systems but does not consider duplication. We show that duplica-
tion brings its own unique challenges in designing stages for each
bottleneck resource and structuring their interactions.

Metadata Propagation. A plethora of recent work [50, 51, 59, 62]
focuses on context propagation (e.g., request IDs) along with indi-
vidual requests to record the work done on behalf of each request,
within and across the nodes of a distributed software system. How-
ever, propagating context across layers other than the application
(e.g., kernel) is still an open problem [21]. DAS makes use of layer
specific methods to deal with this challenge (§3.1).

Resource Capacity Estimation. Our Proxy D-Stage’s use of ca-
pacity estimation in its throttling mechanism is similar to resource
capacity estimation in systems like PARDA [35] and VDC [20]. Sim-
ilar to us, these systems use capacity estimation techniques that
are inspired by TCP. However, these systems focus on dealing with
increased latency or SLO violations whereas our goal is to main-
tain maximal control at the Proxy D-Stage while avoiding under
utilization.

8 DISCUSSION AND FUTUREWORK

Implementation Complexity. The implementation complexity
of DAS is dependent on the layer; in general, higher system layers
(e.g., application) are easier to modify compared to lower layers
(e.g., a system driver). Similarly, supporting different features of
DAS (e.g., prioritization, purging, etc) pose different challenges
at each layer. For example, purging packets from inside network
switches is challenging, whereas prioritization is readily supported
in today’s network switches [15, 22]. These challenges stem from
the brittle nature of legacy systems [53, 63]. However, emerging
technological trends (e.g., programmable network switches [24]
and programmable storage stacks [61]) can facilitate supporting
DAS at deeper layers.

Duplicates with User-level Network Stacks. The support for
duplicates can be effectively introduced in today’s high perfor-
mance user-level network stacks [4, 47] that use kernel-bypass and
leverage network I/O libraries such as DPDK [2] or Netmap [58].
Existing NICs provide support for multiple queues and by applying
appropriate filters (e.g., by using Intel’s Ethernet Flow Director),
duplicate traffic can be pinned to separate queues. These queues
may then be served by a (strictly) low priority thread.

Work Aggregation.Making duplicates safe to use opens up an-
other opportunity: work aggregation. This requires the scheduler
to do fine-grained work, allowing aggregation of the fine-grained
work done by the the primary and duplicate copies of the job. For
example, consider a job – having two sub-parts (A and B) – that
is being processed at two different stages. The primary copy can
first process part A while the duplicate copy processes part B –
aggregating these parts can allow the job to finish even though
both the primary and duplicate copies are not individually finished.

Redundancy-based Storage Systems. Redundancy-based and
quorum-based storage systems can also naturally deal with strag-
glers [55, 56], but they incur high reconstruction cost because they
need to make more requests than required. Such systems can po-
tentially use D-Stages to reduce overhead. For example, K out of N
requests can be high priority while the other N − K can be lower
priority.

Energy Considerations. While making duplicates may increase
energy consumption, there are two factors which can limit this
overhead or may even reduce the overall energy consumption: i)
we use purging so the overall work done by the system (in terms of
executing a request) may not necessarily be significant, and ii) the
overall reduction in response time implies that requests stay in the
system for less time, possibly consuming fewer system resources
and thus lowering the energy consumption.

9 CONCLUSION
Tail latency is a major problem for cloud applications. This paper
showed that by making duplicate requests a first-class concept, we
can proactively use replicas without worrying about overloading
the system. To this end, we proposed a new scheduling technique
(DAS), an accompanying abstraction (D-Stage) that helps realize
DAS for different resources, and end-to-end case studies and evalu-
ation that highlight the feasibility and benefits of DAS for different
bottleneck resources.
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README.md file in the repository for detail about how to setup
and run the experiment.

ACKNOWLEDGEMENTS
We thank our shepherd Robert Beverly, the anonymous CoNEXT
reviewers, and Raja Sambasivan for their constructive feedback
on this work. This work was supported by NSF CNS under award
number 1618321.

257

https://www.github.com/hmmohsin/DAS


Reducing Tail Latency using Duplication:
A Multi-Layered Approach CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] 2017. Apache Hadoop. https://hadoop.apache.org/.
[2] 2017. DPDK: Data Plane Development Kit. http://dpdk.org/.
[3] 2017. Emulab. http://www.emulab.net.
[4] 2017. F-Stack: High Performance Network Framework Based On DPDK. http:

//www.f-stack.org/.
[5] 2017. Google Cloud. https://cloud.google.com/.
[6] 2017. Google Cloud Persistent Disk. https://cloud.google.com/compute/docs/

disks/#pdspecs.
[7] 2017. Kernel Document. https://www.kernel.org/doc/Documentation/block/

cfq-iosched.txt.
[8] 2017. LinuxManpage. http://man7.org/linux/man-pages/man2/ioprio_set.2.html.
[9] 2017. Linux Pthread Manpage. http://man7.org/linux/man-pages/man3/pthread_

setschedprio.3.html.
[10] 2018. Google Cloud. https://cloud.google.com/.
[11] 2018. Packet Bricks. https://github.com/bro/packet-bricks.
[12] 2018. Snort3. https://www.snort.org/snort3.
[13] C. L. Abad, Y. Lu, and R. H. Campbell. 2011. DARE: Adaptive Data Replication

for Efficient Cluster Scheduling. In Proc. IEEE International Conference on Cluster
Computing.

[14] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In Proc. ACM SIGCOMM.

[15] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal Data-
center Transport. In Proc. ACM SIGCOMM.

[16] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert Green-
berg, Ion Stoica, Duke Harlan, and Ed Harris. 2011. Scarlett: Coping with skewed
content popularity in MapReduce clusters. In Proc. EuroSys.

[17] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
Effective Straggler Mitigation: Attack of the Clones.. In Proc. Usenix NSDI.

[18] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica,
Adam Wierman, and Minlan Yu. 2014. GRASS: trimming stragglers in approxi-
mation analytics. In Proc. Usenix NSDI.

[19] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi
Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-reduce
Clusters Using Mantri. In Proc. USENIX OSDI.

[20] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno
Thereska. 2014. End-to-end Performance Isolation Through Virtual Datacenters.
In Proc. USENIX OSDI.

[21] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance Analysis
of Cloud Applications. In Proc. USNIX NSDI.

[22] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-Agnostic Flow Scheduling for Commodity Data Centers. In Proc.
Usenix NSDI.

[23] Wei Bai, Li Chen, Kai Chen, and HaitaoWu. [n. d.]. Enabling ECN inMulti-Service
Multi-Queue Data Centers. In Proc. Usenix NSDI.

[24] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[25] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan Pei, Peng Cheng,
Layong Luo, Yongqiang Xiong, Xiaoliang Wang, et al. 2016. Fast and Cautious:
Leveraging Multi-path Diversity for Transport Loss Recovery in Data Centers..
In Proc. USENIX ATC.

[26] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and G. Guan.
2012. ERMS: An Elastic Replication Management System for HDFS. In Proc. IEEE
Cluster Computing Workshops.

[27] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. 2013. Leveraging end-
point flexibility in data-intensive clusters. In Proc. ACM SIGCOMM.

[28] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM
(Feb. 2013), 74–80.

[29] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron. 2014.
Decentralized Task-aware Scheduling for Data Center Networks. In Proc. ACM
SIGCOMM.

[30] Fahad R Dogar and Peter Steenkiste. 2012. Architecting for Edge Diversity:
Supporting Rich Services Over an Unbundled Transport. In Proc. ACM CoNext.

[31] Abdullah Bin Faisal, Hafiz Mohsin Bashir, Ihsan Ayyub Qazi, Zartash Uzmi,
and Fahad R. Dogar. 2018. Workload Adaptive Flow Scheduling. In Proc. ACM
CoNEXT.

[32] Kristen Gardner. 2017. Modeling and Analyzing Systems with Redundancy. PhD
thesis. http://www.cs.cmu.edu/~harchol/gardner_thesis.pdf.

[33] Kristen Gardner, Mor Harchol-Balter, Esa Hyytiä, and Rhonda Righter. 2017.
Scheduling for efficiency and fairness in systems with redundancy. Performance
Evaluation (2017).

[34] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta

Sengupta. 2009. VL2: a scalable and flexible data center network. In Proc. ACM
SIGCOMM. ACM.

[35] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. 2009. PARDA: Proportional
Allocation of Resources for Distributed Storage Access. In Proc. USENIX FAST.

[36] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs Live in the
Cloud? A Study of 3000+ Issues in Cloud Systems. In Proc. ACM SoCC.

[37] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud Stop
Computing?: Lessons from Hundreds of Service Outages. In Proc. ACM SoCC.

[38] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan
Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms, Robert B. Ross,
Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,
Mingzhe Hao, and Huaicheng Li. 2018. Fail-Slow at Scale: Evidence of Hardware
Performance Faults in Large Production Systems. In Proc. USENIX FAST.

[39] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim, Michel
Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella, David G. Andersen,
John W. Byers, Srinivasan Seshan, and Peter Steenkiste. 2012. XIA: Efficient
Support for Evolvable Internetworking. In Proc. USENIX NSDI. San Jose, CA.

[40] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O Suminto,
Cesar A Stuardo, Andrew A Chien, and Haryadi S Gunawi. 2017. MittOS: Sup-
porting Millisecond Tail Tolerance with Fast Rejecting SLO-Aware OS Interface.
In Proc. ACM SOSP.

[41] Osama Haq and Fahad R. Dogar. 2015. Leveraging the Power of the Cloud for
Reliable Wide Area Communication. In Proc. ACM Hotnets.

[42] Osama Haq, Cody Doucette, John W Byers, and Fahad R Dogar. 2019. Judicious
QoS using Cloud Overlays. arXiv preprint arXiv:1906.02562 (2019).

[43] Osama Haq, Mamoon Raja, and Fahad R. Dogar. 2017. Measuring and Improving
the Reliability of Wide-Area Cloud Paths. In Proc. WWW.

[44] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. Analysis of
HDFS Under HBase: A Facebook Messages Case Study. In Proc. USENIX FAST.

[45] Ali Musa Iftikhar, Fahad Dogar, and Ihsan Ayyub Qazi. 2016. Towards a
Redundancy-Aware Network Stack for Data Centers. In Proc. HotNets.

[46] Syed Mohammad Irteza, Hafiz Mohsin Bashir, Talal Anwar, Ihsan Ayyub Qazi,
and Fahad Rafique Dogar. 2017. Load balancing over symmetric virtual topologies.
In Proc. IEEE INFOCOM.

[47] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proc. NSDI.

[48] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp: Highly flexible
and high performance network processing with reconfigurable hardware. In Proc.
ACM SIGCOMM.

[49] S. Liu, H. Xu, L. Liu, W. Bai, K. Chen, and Z. Cai. 2018. RepNet: Cutting Latency
with Flow Replication in Data Center Networks. IEEE Transactions on Services
Computing (2018).

[50] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.
Retro: Targeted Resource Management in Multi-tenant Distributed Systems. In
Proc. USENIX NSDI.

[51] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems. In Proc. SOSP.

[52] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu, and Fahad R
Dogar. 2014. Friends, not Foes: Synthesizing Existing Transport Strategies for
Data Center Networks. In Proc. ACM SIGCOMM.

[53] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring Endpoint Congestion Control. In Proc. ACM SIGCOMM.

[54] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In Proc. SOSP.

[55] George Parisis, Toby Moncaster, Anil Madhavapeddy, and Jon Crowcroft. 2013.
Trevi: Watering Down Storage Hotspots with Cool Fountain Codes. In Proc. ACM
HotNets.

[56] K.V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. 2014. A "Hitchhiker’s" Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers. In Proc. ACM SIGCOMM.

[57] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. 2015.
Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale. In Proc.
ACM SIGCOMM.

[58] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O. In Proc.
USENIX ATC.

[59] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman, Rodrigo
Fonseca, and Gregory R. Ganger. 2016. Principled Workflow-centric Tracing of
Distributed Systems. In Proc. SoCC.

[60] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich M. Nahum, and Adam
Wierman. 2006. How to Determine a GoodMulti-Programming Level for External

258

https://hadoop.apache.org/
http://dpdk.org/
http://www.f-stack.org/
http://www.f-stack.org/
https://cloud.google.com/
https://cloud.google.com/compute/docs/disks/##pdspecs
https://cloud.google.com/compute/docs/disks/##pdspecs
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
http://man7.org/linux/man-pages/man2/ioprio_set.2.html
http://man7.org/linux/man-pages/man3/pthread_setschedprio.3.html
http://man7.org/linux/man-pages/man3/pthread_setschedprio.3.html
https://cloud.google.com/
https://github.com/bro/packet-bricks
https://www.snort.org/snort3
http://www.cs.cmu.edu/~harchol/gardner_thesis.pdf


CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Bashir et al.

Scheduling. In Proc. IEEE ICDE.
[61] Michael A. Sevilla, Noah Watkins, Ivo Jimenez, Peter Alvaro, Shel Finkelstein,

Jeff LeFevre, and Carlos Maltzahn. 2017. Malacology: A Programmable Storage
System. In Proc. EuroSys.

[62] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. https:
//research.google.com/archive/papers/dapper-2010-1.pdf

[63] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno Thereska. 2016. sRoute:
Treating the Storage Stack Like a Network. In Proc. USENIX FAST.

[64] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander:
Efficiently Meeting Very Strict, Low-Latency SLOs. In Proc. USENIX ICAC.

[65] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark, Huan Ke, Tanakorn Leesata-
pornwongsa, Bo Fu, Daniar H. Kurniawan, Vincentius Martin, Maheswara Rao G.
Uma, and Haryadi S. Gunawi. 2017. PBSE: A Robust Path-based Speculative
Execution for Degraded-network Tail Tolerance in Data-parallel Frameworks. In
Proc. ACM SoCC.

[66] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:
Cutting tail latency in cloud data stores via adaptive replica selection. In Proc.
Usenix NSDI.

[67] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-
stron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. Ioflow: A software-
defined storage architecture. In Proc. ACM SOSP.

[68] Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J. Franklin, Michael I.
Jordan, and David A. Patterson. 2011. The SCADS Director: Scaling a Distributed
Storage System Under Stringent Performance Requirements. In Proc. USENIX
FAST.

[69] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012. Deadline-aware
Datacenter TCP (D2TCP). In Proc. ACM SIGCOMM.

[70] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia
Ratnasamy, and Scott Shenker. 2013. Low latency via redundancy. In Proc. ACM
CoNext.

[71] Qingsong Wei, Bharadwaj Veeravalli, Bozhao Gong, Lingfang Zeng, and Dan
Feng. 2010. CDRM: A Cost-Effective Dynamic Replication Management Scheme
for Cloud Storage Cluster. In Proc. IEEE CLUSTER.

[72] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: an architecture for
well-conditioned, scalable internet services. ACM SIGOPS Operating Systems
Review 35, 5 (2001), 230–243.

[73] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. 2015. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Services. In Proc.
USENIX NSDI.

[74] Hong Xu and Baochun Li. 2014. RepFlow: Minimizing flow completion times
with replicated flows in data centers. In IEEE INFOCOM.

[75] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. 2013. Bobtail:
Avoiding Long Tails in the Cloud.. In Proc. Usenix NSDI.

[76] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
2008. Improving MapReduce Performance in Heterogeneous Environments. In
Proc. USENIX OSDI.

259

https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

	Abstract
	1 Introduction
	2 Duplication Policies
	2.1 Design Choices for Duplication Policies
	2.2 Duplicate-Aware Scheduling (DAS)

	3 The D-Stage Abstraction
	3.1 Job and Metadata
	3.2 Interface
	3.3 Proxy D-Stage

	4 Case Studies
	4.1 Data Parallel Applications
	4.2 Network Function Virtualization

	5 Implementation
	6 Evaluation
	6.1 HDFS Evaluation in Public Cloud Settings
	6.2 HDFS Evaluation in Controlled Settings
	6.3 DP-Network in Public Cloud Settings
	6.4 DAS with IDS cluster
	6.5 Microbenchmark Results

	7 Related Work
	8 Discussion and Future Work
	9 Conclusion
	References

