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ABSTRACT
Human attestation is a promising technique to suppress un-
wanted bot traffic in the Internet. With a proof of human
existence attached to the message, the receiving end can ver-
ify whether the content is actually drafted by humans. This
technique can significantly reduce bot-generated abuse such
as spamming, password cracking or even distributed denial-
of-service (DDoS) attacks. Unfortunately, existing methods
rely on the probabilistic characteristics of attestations and
can be exploited by smart attackers.

In this paper, we propose deterministic human attestation
based on trustworthy input devices. By placing the root of
trust on the input device, we tightly bind the input events
to the content for network delivery. Each input event is
generated with a cryptographic hash that attests to human
activity and the message consisting of such events gets a
third-party verifiable digital signature that is carried to the
remote application. For this, we augment the input device
with a trusted platform module (TPM) chip and a small
attester running inside the device. We focus on trustworthy
keyboards here but we plan to extend the framework to other
input devices.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; D.4.6 [Operating Systems]: Se-
curity and Protection

General Terms
Security, Reliability

Keywords
Human Attestation, Bot Traffic Suppression, Trusted Com-
puting, Networked System Security
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1. INTRODUCTION
Unsolicited messages have widely permeated into our daily

Internet life. Despite decade-long efforts, the volumes of
email, blog, and instant messaging (IM) spam are contin-
ually on the rise, and millions of infected botnet machines
aggravate the situation. 87.7% of the total emails, that is,
107 billion messages being sent globally on a daily basis, are
estimated to be spam in 2009 [7]. University of Pittsburgh
received 51 million spam emails in November 2009 alone
while only 17 million emails were delivered as legitimate to
the users [10]. While best practices such as content-based
filtering [2, 19, 21], DNS blacklisting [12] and network-based
fingerprinting [4, 11] greatly reduce the spam delivery, they
often create false positives - legitimate emails classified as
spam, making the Internet message delivery less reliable.

Human attestation is a promising technique that can po-
tentially exterminate unwanted bot traffic. By carrying a
non-forgeable proof of human existence with the message,
the receiving end can reliably determine the identity of the
traffic source and adjust her filtering policy to better ac-
commodate human traffic. Existing methods typically in-
fer the human activity from key clicks or mouse events and
use TPM-generated signatures as human attestation. This
approach is shown to be effective in reducing spam, DDoS
attacks, click frauds, and so on [3, 8]. However, one serious
problem is that they depend on the probabilistic characteris-
tic of the attestation. For example, Not-a-Bot [3] allows any
bot to get a human attestation for its own content within an
allowed timing window after key or mouse clicks are gener-
ated. Though the rate of illegitimate attestations is bounded
by that of human activity, smart attackers can determinis-
tically bypass any spam filter based on human attestation.
That is, bots could generate sophisticated spam messages
for targeted users or act like humans when they access In-
ternet banking or E-commerce sites if they adopt existing
methods as human identification.

The key question this paper poses is how strongly one
can bind human activity to the content that is sent over
the network. We argue that the content should carry a sig-
nature that can be independently verified that its content
was actually created by a human. We build a framework in
which each element in the content is confirmed to be human-
generated. In our framework, only the part of the content
that is made of keystrokes gets a human attestation and the
rest of it is tagged as unattested before delivering to the
remote application. Based on the accurate human content
attestation, the remote application can make an informed



scan code (ξ) timestamp (τ) proof (π)
1-3 bytes 8 bytes 3 bytes

Table 1: Secure Keycode Format

decision whether to accept or block the content. This scheme
prevents malicious bots from getting attestations for auto-
mated content and limits the input for content to human
typing.

The root of trust in our framework is the input device.
The input device generates each input event along with its
own “proof”. The input event proof is simply a crypto-
graphic hash of the input value and its timestamp, and can
be verified only by the input device that generates it. When
the application needs human attestation on the content, it
asks the input device to generate a signature of the content
by having it verify the proofs. For the digital signature, we
embed a TPM chip in the input device and benefit from
its built-in attestation functionality. Our framework does
not assume any trusted computing base (TCB) from the
operating system or applications, but it still eliminates the
bot abuse except random content sending. We implement
SMTP and SSH clients and servers that use our framework
and show that it is easy to support accurate human attesta-
tion in network message delivery. We focus on the keyboard
as the input device in this paper, and we plan to extend the
framework to other input devices.

2. ADVERSARY MODEL
We assume that the only trusted component in the host

machine is the input device. We assume that the input de-
vice is equipped with a TPM and a small attester daemon
running inside the device. The TPM is used solely for pub-
lishing independently-verifiable digital signatures. The at-
tester monitors the keystroke interrupts and generates key
events along with the proofs and timestamps. These proofs
are later verified again by the attester, and the built-in TPM
signs the message content from the application. We assume
that the attester daemon and the TPM are trusted and can-
not be compromised while they can be physically damaged.

The rest of the system (e.g., the OS and applications) can
be compromised by adversaries. Bots such as spyware can be
installed in the host machine and can monitor and intercept
the key events from the input device. They can attempt
to assemble a message out of the key events but we assume
bots cannot generate valid proofs for random key events by
themselves. The valid keystroke events are generated only
by physically pressing the input device. We do not defend
against the attacks that disrupt the network access or proper
functioning of innocent applications.

3. ATTESTATION FRAMEWORK
Our attestation framework builds on the assumption that

input devices produce the key events that can be verified to
be typed by humans. Only the content made of such input
events can get the accurate attestation from the device and
can be verified by remote applications. One can think of
securing inputs with a system TPM in the trusted virtual
machine hypervisor, but such a scheme may not be an ideal
solution on client machines that do not use virtual machines.

3.1 Trustworthy Keyboard
We define an extended key event, which we call secure

keycode, and show its format in Table 1. Secure keycode
consists of a scan code (ξ), a timestamp (τ), and a proof
(π). τ records the secure keycode generation time in the
millisecond granularity (4 bytes for a date and 4 bytes for
milliseconds past on that day). Timestamps prevent replay-
ing of old keycode by malicious bots and give hints to the
remote applications about when each character in the con-
tent is typed. π is a cryptographic hash of the scan code and
the timestamp. We use the last three bytes of HMAC(Ks,
〈 ξ | τ 〉), where Ks is a secret key that never leaks out of
the keyboard. Since we use constantly-changing timestamps
in hash calculation, the same characters would produce dif-
ferent hash values. The proof also limits the probability of
generating valid keycode by random guess to 2−24. We note
that the secure keycode brings a 4 to 12 times blowup in
the key event size, but the secure keycode is used only in
the local host between the input device and the application.
Since the key generation rate is bounded by human typing,
we believe the size overhead is bearable given the trend of
increasing CPU power and ample memory of modern com-
puters. We call a keyboard trustworthy if it generates secure
keycode and attests to the human-generated content consist-
ing of secure keycode.

The attester in the keyboard is responsible for generating
the secure keycode and human attestation. It is assumed
to be running on a low-powered processor with small non-
volatile storage space to save the secret keys. The attester
monitors keystroke interrupts and wraps the generated scan
code in the secure keycode. It creates the secret key for
HMAC, and rotates the key every n days (e.g., n=2) while
keeping the previous secret key. Secure keycode older than
2n days are assumed to be invalid for the purpose of human
attestation.

3.2 Human Content Attestation
The attestation to the human-generated content requires

two steps: secure key code validation and TPM-based signa-
ture generation. The user application provides the content
for attestation in a sequence of secure code to the attester.
The attester verifies if the content consists of valid secure
keycode by rehashing the scan code and the timestamp. If
the verification succeeds, the attester uses the built-in TPM
to sign on the content. If the timestamp is too old or the
proof does not match the last three bytes of HMAC value
with either current or old Ks (depending on the key gen-
eration timestamp), the verification process fails and the
application client is notified of a failure.

After secure keycode validation, the attester extracts only
the scan code and the timestamp from secure keycode for hu-
man content attestation. We call the array of (scan code,
base time offset) the CodeTimeMap of the content. To re-
duce the size of the original timestamp, we use a base time
and its offset to represent the timestamp. The base time is
the smallest timestamp in the content keycode and the base
time offset is the difference between the base time and its
original timestamp. The granularity of the base time offset
is 100 ms. The attester rearranges the offsets so that no two
same characters belong to the same 100 ms time bin. For
example, if a user types a word, ‘cool’, and in the rare case
that the first ‘o’ and the second ‘o’ belong to the same 100
ms bin, the base time offset of the second ‘o’ is adjusted to



Figure 1: Human Content Attestation Process

the next 100 ms bin. This prevents the bots from reusing
the same character. The content CodeTimeMap is signed by
the TPM and the resulting signature attests that the con-
tent is typed by a human using the trustworthy keyboard
that hosts the TPM. The return value for successful attes-
tation is (base time, base time offset size, CodeTimeMap,
TPM signature, signature timestamp), where the base time
offset size is the number of bytes required to represent the
largest base offset in the CodeTimeMap. Two to three bytes
should be enough for the offset in practice (1.8 hours to 19.4
days).

Fig. 1 illustrates how a typical network application at-
tests to the human-typed content. The application receives
the secure keycode from the trustworthy keyboard as a hu-
man user types the content. When the application needs
to send the message over the network, it asks the keyboard
for attestation by providing the array of secure keycode for
the message. When the application obtains the digital sig-
nature of the content, it sends the signature and the con-
tent CodeTimeMap along with the original content. In case
the content for transfer includes invalid secure keycode (e.g.,
copy & paste from other documents, characters typed long
time ago, automatically-generated content by application,
etc.), the application requests a signature only for the por-
tion of valid secure code. It tags other part as unattested,
and lets the remote verifier decide whether to accept it or
not using her own policy. Another option is to get the full
content attestation by engaging the human user. If the at-
tester fails to verify some keycode in the content, it can
generate a CAPTCHA test to the human user. For exam-
ple, the attester can create a CAPTCHA image consisting
of n characters chosen at random. The attester returns this
image with a TPM signature that signs (CodeTimeMap |
n-character phrase) along with other information. The ap-
plication shows the CAPTCHA image to the user, and if the
user’s answer matches the phrase, the application appends
the phrase to the CodeTimeMap. Note that the CAPTCHA
test is a configuration option, and a human user chooses this
path only when she wants full guarantee to pass human ver-
ification for the entire content.

Malicious bots can attempt to mix and match the secure
keycode, but the chance of producing a meaningful mes-
sage should be negligible. Because the keycode becomes
invalid after two rounds of HMAC secret key rotation, the

Function Latency
TPM Extend 14 ms

TPM PCR Reset 11 ms
TPM Quote ({1024,2048}-bit RSA) {145, 746} ms

TPM LoadAIK Key (one-Time Operation) 2.43 s

Table 2: Function Latency (STMicroelectronics TPM)

bots cannot indefinitely wait for any missing characters they
want. Our framework does not prevent replaying the entire
message that a human user creates, but we doubt if spam-
ming bots have an incentive to replay a regular human-typed
email. In case of interactive applications such as SSH, the
receiving end can enforce a policy to accept only the com-
mands whose last-typed character is within a threshold pe-
riod (e.g., 10 seconds).

3.3 Remote Verification
The remote verification process is straightforward. The

verifier for the content recipient first checks whether the key
(known as attestation identity key (AIK)) used to sign the
CodeTimeMap actually comes from a valid TPM. This can
be done by contacting a trusted third-party Certifying Au-
thority (CA) that vouches for the integrity of the TPM via
a certificate. Next, it verifies the signature itself with the
public AIK. After signature verification, the remote verifier
can apply her own policy based on the keycode timing in-
formation. For example, if an email is created beyond an
acceptable time interval, the verifier can ignore human at-
testation, and run a regular spam filter on the content. Or if
many words in the content are created in random order, the
verifier may suspect the content was mixed and matched by
a bot. We believe there is large space to explore in the fil-
tering policy based on the human attestation signature and
the CodeTimeMap.

4. EXPERIMENTAL EVALUATION
For a proof of concept, we have implemented the attester

as a user-level process (856 lines of C code) and have ap-
plications get the secure input and content attestation via a
socket interface. We have updated the USB keyboard driver
to expose the key events through the sysfs file system in-
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Figure 2: Time to verify human-attested emails. On 2.50
GHz Intel Pentium single-core machine with 6 GB RAM.

terface. We use Linux 2.6.21 and an on-board TPM from
STMicroelectronics that ships with Dell Optiplex 780, an
2.70 GHz Intel dual-core machine with 3 GB memory.

We first measure the TPM function latency and show
the results in Table 2. TPM Extend loads the data to
be signed to Platform Configuration Register (PCR) and
TPM PCR Reset flushes the data. TPM Quote signs the
PCR value using the private AIK loaded by TPM LoadAIK Key.
TPM Quote (2048-bit RSA) takes 746 ms, which is the slow-
est operation in getting the attestation. A typical 2048-
bit TPM Quote size is 580 bytes long consisting of an AIK
(256B), a TPM-constructed data blob containing essential
PCR attributes (48B), the RSA signature (256B) of that
data blob and the SHA1 hash (20B) of the actual data. The
current TPM specification do not allow AIK certification for
key sizes smaller than 2048 bits. This is due to the concern
that smaller RSA keys can be broken in the future.

4.1 Human-typed Email Verification
We have implemented a Mozilla Thunderbird 2.0.0.23 ex-

tension that attaches Base64-encoded human attestation sig-
nature to every human-typed email. We also implement a
verification filter that works with Postfix 2.5.5-1 [9]. The fil-
ter scans the human attestation signature attached to emails
and flags them as human-generated or unattested.

Figure 3 shows our Postfix filter performance. All emails
in the graph take less than 70 ms for human verification.
We compare it with the filtering latency of SpamAssassin
3.2.5, a popular content-based spam filter, with the default
configuration. Our verification performance is comparable
to that of SpamAssassin for small content, but as the size of
the email increases, the performance gap widens. Our filter
is 12 times faster than SpamAssassin at 64 KB email.

4.2 SSH Command Attestation
We have added human attestation to the Dropbear 0.52 [1]

SSH client/server suite so that each ssh command carries an
attestation signature and the server verifies the signature
before launching the command. That is, for every enter key,
we send the signature to the server for human verification.

Figure 3 shows the attestation signature generation time
as the command size increases. We downgraded the CPU
clock frequency of Dell Optiplex 780 to 1.20 GHz to simulate
a low-power processor that the attester is likely to be using.
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Figure 3: Time taken to attest a group of characters on a
Dropbear ssh session. On a 1.20 GHz Intel Pentium single
core machine with 3GB RAM.

We see relatively high latency for 2048-bit RSA signature
generation, reflecting the slow operation of TPM Quote. In
contrast, 1024-bit RSA signatures show much smaller la-
tency, which makes it practical for interactive environments.
Given that 1024-bit RSA is widely used in the SSL protocol,
we believe 1024-bit RSA can be a reasonable choice for the
current day use if the the TPM specification allows it. One
nice trend is that the response time stays more or less the
same regardless of the command size. We hope that the per-
formance of TPM Quote improves as the demand for faster
TPM grows.

5. RELATED WORK
Not-a-Bot (NAB) [3] motivated our work. NAB proposes

a simple human attestation framework that can be used to
reduce spam, click frauds, DDoS attacks, etc. They infer
the human existence from input device events, and allow
human content attestation with a TPM within an accept-
able time window (they use one second) from the last key
click. However, their scheme can be abused by smart attack-
ers, which is noted in their work. We share the same goal
of suppressing the bot traffic, but provide a stronger attes-
tation framework that eliminates the bot abuse by tightly
binding the key events to the content. Our earlier work
explored bot detection in the Web environment by having
obfuscated Javascript code catch the input events of the
users [8]. It has shown to be effective to block most Web
abuse on CoDeeN content distribution networks [18], though
it does not prevent sophisticated bots that generate software
interrupt-based input events.

Sailer et al. developed the first framework that employs a
TPM for static software stack-based remote attestation [13].
McCune et al. built a trusted path between sandboxed soft-
ware and the remote application by using dynamic root of
trust [6] and reduced the trusted computing base to a single
secure hypervisor having a small code footprint. Our frame-
work adds human attestation and can further improve the
level of trust in human-interactive applications as it elimi-
nates the dependence of a trusted software stack from the
scheme.

Modern spam filters [2, 15] typically rely on content-based
filtering coupled with IP-based [14] and URL-based [16] black-



listings. There has been significant amount of research on
devising accurate detection techniques to defend against spam-
mers primarily originating from botnets [4, 5, 12, 17, 20].
They usually add a set of features to spam-detecting classi-
fiers that capture the behavior of botnets. While the spam
detection accuracy has improved greatly over time, the in-
herent probabilistic nature of learning-based filtering often
creates false positives, which makes the legitimate email de-
livery unreliable. Human attestation can potentially bring
the false positive rate to zero.

6. CONCLUSION
We have developed an accurate human attestation frame-

work that draws the trust from the input device. With-
out any dependency on the software stack integrity beyond
trustworthy input devices, remote applications can verify if
the content is actually created by humans. We have also
shown that it is straightforward to employ our scheme into
existing applications that deal with human-typed content.

The immediate next step would require adding other in-
put devices such as mouse. We are working on capturing
the sequence of mouse events and connecting them to the
content creation context. Remote verifier policy is another
interesting area to explore. With the timestamp of each
character, one can calculate the fraction of the words cre-
ated from left-to-right and use the information to block any
content that is mixed and matched by sophisticated bots.
User privacy can be a concern, and minimizing the exposure
of the timing information while maintaining a good filtering
quality should be further studied.
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