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ABSTRACT
In this work, we present a highly scalable network intrusion
detection system on many-core processors. To maximize the
NIDS performance, we take advantage of the underlying hard-
ware and adhere to four design principles: shared-nothing
architecture, computation offloading, lightweight data struc-
ture, and flow offloading. Through the experimental results,
we find that our design choices can significantly improve the
NIDS performance (79 Gbps with 1514B synthetic packets).
We believe that our design decisions can be easily extended
to other many-core processors and programmable NICs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring

General Terms
Performance

Keywords
many-core, network intrusion detection system, parallel, of-
floading

1. INTRODUCTION
Network intrusion detection systems (NIDSes) are widely

deployed to detect malicious activities in a given network.
As network bandwidth at the Internet edge rises, the need
for a high performance NIDS is getting critical.

Current commercial NIDSes use FPGA and ASIC hard-
ware for analyzing traffic at high rates. While these NIDSes
deliver impressive monitoring throughputs, it is often chal-
lenging to configure or update such systems across varying
networking environments. On the flip side, IDSes based
on commodity-computing hardware, such as multi-core pro-
cessors and GPUs, provide high flexibility as well as low
cost. Moreover such hardware features have helped devel-
opers write efficient IDS systems that now achieve process-
ing performances that are comparable with commercialized
hardware solutions. However, NIDSes based on such hetero-
geneous systems (GPU-based) [5,6] do have some drawbacks:
it is normally difficult to program a SIMD module on a GPU
such that it delivers peak performance while keeping the
power consumption and processing latencies in check.
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Figure 1: CPU usage breakdown of Suricata mod-
ules over various packet size

Recent advancements in system-on-chip many-core pro-
cessors (MCPs) seem to have resolved most of the issues
mentioned above. MCPs host tens to hundreds of processing
cores, allowing highly flexible general-purpose computations.
With massively parallel computation capacity, they can sig-
nificantly improve the performance of a NIDS ported on a
MCP.

In this work, we build a high-performance NIDS on many-
core processors. Our design principle is to balance the work-
load across many cores to achieve high parallelism while
minimizing the per-packet processing overhead by exploiting
the underlying hardware. We enforce four design choices:
shared-nothing architecture for high parallelism, computa-
tional offloading to programmable network interface cards
(NICs), using lightweight data structures, and offloading
flows to host system’s CPU. We develop our system on a
TILE-Gx72 many-core processor [3].

2. MOTIVATION
Pattern matching is typically the major performance bot-

tleneck of signature-based NIDSes. However our microbench-
mark experiments reveal that massively parallelizing the
execution of pattern matching routines diminishes the per-
formance drop since the DPI workload to analyze incoming
traffic gets distributed to all cores. In fact, as shown in
Figure 1, the per-packet overhead to process NIDS metadata
takes up a large portion of overall processing cycles: the



detect module represents the pattern matching module while
the other modules represent per-packet operations (based
on packet headers). Per-packet operations require the same
amount of processing cycles regardless of packet size. How-
ever, as the packet size decreases, the portion of per-packet
operations becomes critical. In this work, we thus focus
on improving the performance of processing metadata with
hardware-level features of many-core processors.

3. DESIGN
The basic ideas of our NIDS are parallelizing pattern

matching as much as possible by giving the most computation
cycles to the performance-critical operation and reducing
the overhead of per-packet operation as much as possible by
employing available hardware resource to offload per-packet
operations from regular processing cores.

3.1 Shared-nothing architecture
Earlier versions of NIDSes adopt pipelining architecture

that has a few fundamental limitations. For instance, it
is hard to decide how many cores need to be assigned for
each module due to various incoming workloads. In addition,
the pipelining architecture can increase inter-core commu-
nication and lock contention, which are crucial to achieve
high performance. On the other hand, our NIDS adopts the
shared-nothing architecture where each thread is running a
separate NIDS engine and pinned to a tile. Furthermore, we
eliminate any shared data structures (e.g., flow table) be-
tween NIDS engines. Thus, the shared-nothing architecture
ensures high scalability unlike the pipelining architecture.

3.2 Optimizations
Computation offloading to programmable NICs:

Recently, many NICs [1] provide programmable features.
To optimize per-packet operations, we employ the feature of
programmable NICs (specifically, mPIPE packet I/O engine
in a TILE-Gx72 processor) to offload per-packet operations
(e.g., decoding and flow hash computation) from regular pro-
cessing cores. Once packets come to the NICs, the NICs
preprocess some of per-packet operations, and each NIDS
engine directly exploits the processed result. Thus, we can
save the compute cycles and memory accesses from tiles.

Lightweight data structure: To further reduce the over-
head of per-packet operations, we simplify packet metadata
structure. NIDSes support diverse packet I/O engines and
protocols so that the size of packet metadata structure be-
comes huge. We divide the data structures into two groups:
frequently used fields and rarely used fields. Then, we extract
the latter from the data structure. If the rarely used fields are
required, they are dynamically allocated on demand. With
the lightweight data structure, we can reduce the overall
number of cache misses.

Flow offloading to host-side CPU: Once the ingress
traffic exceeds the NIDS processing capacity on the many-
core processor, subsequent packets should be dropped, result-
ing in missing chances to detect some of malicious activities.
To mitigate this problem, we exploit a PCIe module on the
many-core processor (specifically TRIO module in a TILE-
Gx72 processor). The basic idea is to dynamically offload
subsequent flows to host-side CPU for analysis when the
many-core processor faces a high workload. To maximize of-
floading throughput, we exploit three techniques: developing
a zero-copying offloading module, increasing PCIe queues to
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Figure 2: Breakdown of performance improvement
by each technique

reduce the contention across main cores, and offloading pack-
ets in a batch to reduce per-packet PCIe transfer overhead.

4. EXPERIMENTAL RESULT
We install a many-core TILE-Gx72 processor on a machine

with dual Intel E5-2690 CPUs (octacore, 2.90 GHz, 20 MB
L3 cache) with 32 GB of RAM. We run our NIDS extended
from a TILE-optimized Suricata [2] on the TILE processor
and CPU-based Kargus [5] on the host side. Each NIDS is
configured with 2,435 HTTP rules from the Snort 2.9.2.1
ruleset. We generate specific-size packets containing random
payloads using our packet generator developed on PSIO [4].

Figure 2 shows the performance breakdown of the three
key techniques under synthetic HTTP traffic. The overall
performance ranges from 16 to 79 Gbps depending on the
packet size. Computation offloading and metadata reduction
achieve 33% (1514B packets) to 88% (64B packets) improve-
ments and CPU-side flow offloading achieves 32% additional
improvement on average. Through the results, we find that
reducing the per-packet operations significantly improves the
overall NIDS performance, and we gain noticeable perfor-
mance benefits by utilizing the host resources.
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